Unitarization Technics in Hadron Physics with Historical Remarks
Abstract
1. Introduction
- The tree approximation to the scattering amplitudes violate badly unitarity. This could also be said for perturbative unitarity, at least in some partial waves.
- The Lagrangians are nonlinear and nonrenormalizable, which makes difficult to compute higher-order corrections. Nowadays, we would better say that there is a rapid proliferation of counterterms as the order of the calculation increases in ChPT, with the state of the art at the two-loop level in ChPT. It is typically simpler and much more predictive to implement lower-order calculations of ChPT within non-perturbative methods (several examples are given along this review related to meson-meson scattering and spectroscopy, like for example, the phase shifts, scalar and vector pion form factors, impact of the resonances and in the low-energy phenomenology, decays, etc.).
- Even if such corrections could be computed, the resultant renormalized perturbation series would probably diverge, since the perturbation parameter has the strength characteristic of strong interactions. This is clear from phenomenology because hadronic interactions are characterized by plenty of resonances and a rapid saturation of unitarity in many partial-wave amplitudes (PWAs).
2. Unitarity
3. ERE, -Matrix, IAM and Padé Approximants
3.1. ERE and K-Matrix Approaches
3.2. ERE and IAM
3.3. IAM and Padé Approximants
4. Final-State Interactions
4.1. ERE, the Omnès Solution and Coupled Channels
- (i)
- If the asymptotic high-energy behavior of is known to be proportional to , then
- (ii)
- Under changes of the parameters when modeling strong interactions one should keep Equation (67) unchanged. As is a known constant, then
4.2. The IAM for FSI
4.3. KT Formalism
5. The Method
5.1. Scattering
5.2. FSI
5.3. The Exact Method in NR Scattering
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Coleman, S.; Wess, J.; Zumino, B. Structure of Phenomenological Lagrangians. I. Phys. Rev. 1969, 177, 2239. [Google Scholar] [CrossRef]
- Callan, C.G.; Coleman, S.; Wess, J.; Zumino, B. Structure of Phenomenological Lagrangians. II. Phys. Rev. 1969, 177, 2247. [Google Scholar] [CrossRef]
- Weinberg, S. Dynamical approach to current algebra. Phys. Rev. Lett. 1967, 18, 188. [Google Scholar] [CrossRef]
- Schwinger, J. Chiral dynamics. Phys. Lett. B 1967, 24, 473. [Google Scholar] [CrossRef]
- Wess, J.; Zumino, B. Lagrangian method for chiral symmetries. Phys. Rev. 1967, 163, 1722. [Google Scholar] [CrossRef]
- Gasiorowicz, S.; Geffen, D. Effective Lagrangians and field algebras with chiral symmetry. Rev. Mod. Phys. 1969, 41, 531. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory to One Loop. Ann. Phys. 1984, 158, 142. [Google Scholar] [CrossRef]
- Ecker, G. Chiral perturbation theory. Prog. Part. Nucl. Phys. 1995, 35, 1. [Google Scholar] [CrossRef]
- Pich, A. Chiral perturbation theory. Rept. Prog. Phys. 1995, 58, 563. [Google Scholar] [CrossRef]
- Bernard, V.; Meißner, U.-G. Chiral perturbation theory. Ann. Rev. Nucl. Part. Sci. 2007, 57, 33. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Schnitzer, H.J. Current algebra and unitarity. Phys. Rev. Lett. 1970, 24, 1384. [Google Scholar] [CrossRef]
- Schnitzer, H.J. Current algebra beyond the tree approximation. Phys. Rev. D 1970, 2, 1621. [Google Scholar] [CrossRef]
- Brown, L.S.; Goble, R.L. Pion-Pion Scattering, Current Algebra, Unitarity, and the Width of the Rho Meson. Phys. Rev. Lett. 1968, 20, 346. [Google Scholar] [CrossRef]
- Weinberg, S. Pion scattering lengths. Phys. Rev. Lett. 1966, 17, 616. [Google Scholar] [CrossRef]
- Chew, G.F.; Mandelstam, S. Theory of the low-energy pion-pion interaction. Phys. Rev. 1960, 119, 467. [Google Scholar] [CrossRef]
- Lehmann, H. Chiral invariance and effective range expansion for pion pion scattering. Phys. Lett. 1972, 41, 529. [Google Scholar] [CrossRef]
- Roiesnel, C.; Truong, T.N. Resolution of the η → 3π Problem. Nucl. Phys. B 1981, 187, 293. [Google Scholar] [CrossRef]
- Truong, T.N. Chiral Perturbation Theory and Final State Theorem. Phys. Rev. Lett. 1988, 61, 2526. [Google Scholar] [CrossRef]
- Truong, T.N. Remarks on the unitarization methods. Phys. Rev. Lett. 1991, 67, 2260. [Google Scholar] [CrossRef]
- Khuri, N.N.; Treiman, S.B. Pion-pion scattering and K+/- → 3π decay. Phys. Rev. 1960, 119, 1115. [Google Scholar] [CrossRef]
- Oller, J.A. A Brief Introduction to Dispersion Relations. With Modern Applications; Springer Briefs in Physics; Springer: Heidelberg, Germany, 2019. [Google Scholar]
- Muskhelishvili, W.I. Singular Integral Equations; Springer: Amsterdam, The Netherlands, 1958. [Google Scholar]
- Watson, K.M. Some general relations between the photoproduction and scattering of π mesons. Phys. Rev. 1955, 95, 228. [Google Scholar] [CrossRef]
- Tanabashi, M. Particle Data Group. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E. N/D description of two meson amplitudes and chiral symmetry. Phys. Rev. D 1999, 60, 074023. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E. Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the σ, f0(980), a0(980) scalar mesons. Nucl. Phys. A 1997, 620, 438. [Google Scholar] [CrossRef]
- Roy, S.M. Exact integral equation for pion-pion scattering involving only physical region partial waves. Phys. Lett. B 1971, 36, 353. [Google Scholar] [CrossRef]
- Ananthanarayan, B.; Colangelo, G.; Gasser, J.; Leutwyler, H. Roy equation analysis of ππ scattering. Phys. Rep. 2001, 353, 207. [Google Scholar] [CrossRef]
- Colangelo, G.; Gasser, J.; Leutwyler, H. ππ scattering. Nucl. Phys. B 2001, 603, 125. [Google Scholar] [CrossRef]
- Kaminski, R.; García-Martín, R.; Grynkiewicz, P.; Peláez, J.R.; Ynduráin, F.J. New dispersion relations in the description of pi pi scattering amplitudes. Int. J. Mod. Phys. A 2009, 24, 402. [Google Scholar] [CrossRef]
- García-Martín, R.; Kaminski, R.; Peláez, J.R.; Ruiz de Elvira, J.; Ynduráin, F.J. The pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV. Phys. Rev. D 2011, 83, 074004. [Google Scholar] [CrossRef]
- Weinberg, S. Nuclear forces from chiral Lagrangians. Phys. Lett. B 1990, 251, 288. [Google Scholar] [CrossRef]
- Weinberg, S. Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B 1991, 363, 3. [Google Scholar] [CrossRef]
- Oller, J.A.; Entem, D.R. The exact discontinuity of a partial wave along the left-hand cut and the exact N/D method in non-relativistic scattering. Ann. Phys. 2018, 411, 167965. [Google Scholar] [CrossRef]
- Entem, D.R.; Oller, J.A. The N/D method with non-perturbative left-hand-cut discontinuity and the 1S0 NN partial wave. Phys. Lett. B 2017, 773, 498. [Google Scholar] [CrossRef]
- Kaiser, N.; Siegel, P.B.; Weise, W. Chiral dynamics and the low-energy kaon-nucleon interaction. Nucl. Phys. A 1995, 594, 325. [Google Scholar] [CrossRef]
- Oset, E.; Ramos, A. Nonperturbative chiral approach to s wave anti-K N interactions. Nucl. Phys. A 1998, 635, 99. [Google Scholar] [CrossRef]
- Oller, J.A.; Meißner, U.-G. Chiral dynamics in the presence of bound states: Kaon nucleon interactions revisited. Phys. Lett. B 2001, 500, 263. [Google Scholar] [CrossRef]
- Jido, D.; Oller, J.A.; Oset, E.; Ramos, A.; Meißner, U.-G. Chiral dynamics of the two Λ(1405) states. Nucl. Phys. A 2003, 725, 181. [Google Scholar] [CrossRef]
- Meißner, U.-G.; Oller, J.A.; Wirzba, A. In-medium chiral perturbation theory beyond the mean field approximation. Ann. Phys. 2002, 297, 27. [Google Scholar] [CrossRef][Green Version]
- Birse, M.C. Power counting with one-pion exchange. Phys. Rev. C 2006, 74, 014003. [Google Scholar] [CrossRef]
- Lacour, A.; Oller, J.A.; Meißner, U.-G. Non-perturbative methods for a chiral effective field theory of finite density nuclear systems. Ann. Phys. 2011, 326, 241. [Google Scholar] [CrossRef]
- Lacour, A.; Oller, J.A.; Meißner, U.-G. The Chiral quark condensate and pion decay constant in nuclear matter at next-to-leading order. J. Phys. G 2010, 37, 125002. [Google Scholar] [CrossRef]
- Lacour, A.; Oller, J.A.; Meißner, U.-G. Chiral Effective Field Theory for Nuclear Matter with long- and short-range Multi-Nucleon Interactions. J. Phys. G 2010, 37, 015106. [Google Scholar] [CrossRef]
- Dobado, A.; Llanes-Estrada, F.J.; Oller, J.A. The existence of a two-solar mass neutron star constrains the gravitational constant G_N at strong field. Phys. Rev. C 2012, 85, 012801. [Google Scholar] [CrossRef]
- Oller, J.A. An in-medium chiral power-counting scheme for nuclear matter and some applications. J. Phys. G 2019, 46, 073001. [Google Scholar] [CrossRef]
- Kaiser, N. Resummation of fermionic in-medium ladder diagrams to all orders. Nucl. Phys. A 2012, 860, 41. [Google Scholar] [CrossRef]
- Kaiser, N. Resummation of in-medium ladder diagrams: S-wave effective range and p-wave interaction. Eur. Phys. J. A 2012, 48, 148. [Google Scholar] [CrossRef][Green Version]
- Boulet, A.; Lacroix, D. Approximate self-energy for Fermi systems with large S-wave scattering length: A step towards density functional theory. J. Phys. G 2019, 46, 105104. [Google Scholar] [CrossRef]
- Dobado, A.; Llanes-Estrada, F.J.; Sanz-Cillero, J.J. Resonant production of Wh and Zh at the LHC. J. High Energy Phys. 2018, 3, 159. [Google Scholar] [CrossRef]
- Delgado, R.L.; Dobado, A.; Espada, M.; Llanes-Estrada, F.J.; Merino, I.L. Collider production of electroweak resonances from γγ states. J. High Energy Phys. 2018, 11, 10. [Google Scholar] [CrossRef]
- Delgado, R.L.; Dobado, A.; Llanes-Estrada, F.J. Unitarity, analyticity, dispersion relations, and resonances in strongly interacting WLWL, ZLZL, and hh scattering. Phys. Rev. D 2015, 91, 075017. [Google Scholar] [CrossRef]
- Delgado, R.L.; Dobado, A.; Llanes-Estrada, F.J. Possible new resonance from WLWL-hh interchannel coupling. Phys. Rev. Lett. 2015, 114, 221803. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, S. Phenomenological Lagrangians. Physica A 1979, 96, 327. [Google Scholar] [CrossRef]
- Burgess, C.P. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Rel. 2004, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874. [Google Scholar] [CrossRef]
- Han, T.; Willenbrock, S. Scale of quantum gravity. Phys. Lett. B 2005, 616, 215. [Google Scholar] [CrossRef]
- Aydemir, U.; Anber, M.M.; Donoghue, J.F. Self-healing of unitarity in effective field theories and the onset of new physics. Phys. Rev. D 2012, 86, 014025. [Google Scholar] [CrossRef]
- Calmet, X. The Lightest of Black Holes. Mod. Phys. Lett. A 2014, 29, 450204. [Google Scholar] [CrossRef]
- Calmet, X.; Casadio, R. The horizon of the lightest black hole. Eur. Phys. J. C 2015, 75, 445. [Google Scholar] [CrossRef]
- Weinberg, W. The Quantum Field Theory of Fields. Volume I. Foundations; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Haag, R. Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 1958, 112, 669. [Google Scholar] [CrossRef]
- Ruelle, D. On the asymptotic condition in quantum field theory. Helv. Phys. Acta 1962, 35, 147. [Google Scholar]
- Martin, A.D.; Spearman, T.D. Elementary Particle Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Eden, R.J.; Landshoff, P.V.; Olive, D.I.; Polkinghorne, J.C. The Analytic S-Matrix; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Oller, J.A. Coupled-channel approach in hadron-hadron scattering. Prog. Part. Nucl. Phys. 2020, 110, 103728. [Google Scholar] [CrossRef]
- Bethe, H.A. Theory of the effective range in nuclear scattering. Phys. Rev. 1949, 76, 38. [Google Scholar] [CrossRef]
- Adler, S.L. Consistency conditions on the strong interactions implied by a partially conserved axial vector current. Phys. Rev. 1965, 137, B1022. [Google Scholar] [CrossRef]
- Au, K.L.; Morgan, D.; Pennington, M.R. Meson dynamics beyond the quark model: Study of final-state interactions. Phys. Rev. D 1987, 35, 1633. [Google Scholar] [CrossRef] [PubMed]
- Gounaris, G.J.; Sakurai, J. Finite-width corrections to the vector-meson-dominance prediction for ρ → e+e-. Phys. Rev. Lett. 1968, 21, 244. [Google Scholar] [CrossRef]
- Brehm, J.J.; Golowich, E.; Prasad, S.C. Hard-pion effective-range formula for the pion form factor. Phys. Rev. Lett. 1969, 23, 666. [Google Scholar] [CrossRef]
- Anisovich, V.V.; Sarantsev, A.V. K-matrix analysis of the (IJPC = 00++)-wave in the mass region below 1900 MeV. Eur. Phys. J. A 2003, 16, 229. [Google Scholar] [CrossRef]
- Moir, G.; Peardon, M.; Ryan, S.M.; Thomas, C.E.; Wilson, D.J. Coupled-channel Dπ, Dη and DsK¯ scattering from Lattice QCD. J. High Energy Phys. 2016, 16, 011. [Google Scholar] [CrossRef]
- Kawarabayashi, K.; Suzuki, M. Partially conserved axial-vector current and the decays of vector mesons. Phys. Rev. Lett. 1966, 16, 255. [Google Scholar] [CrossRef]
- Riazuddin; Fayyazuddin. Algebra of Current Components and Decay Widths of ρ and K* mesons. Phys. Rev. 1966, 147, 1071. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Zachariasen, F. Form factors and vector mesons. Phys. Rev. 1961, 124, 953. [Google Scholar] [CrossRef]
- Sakurai, J.J. Theory of strong interactions. Ann. Phys. 1960, 11, 1. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E.; Peláez, J.R. Meson meson interaction in a non-perturbative chiral approach. Phys. Rev. D 1999, 59, 074001, Erratatum in 1999, 60, 099906; Erratatum in 2007, 75, 099903. [Google Scholar] [CrossRef]
- Dobado, A.; Herrero, M.J.; Truong, T.N. Unitarized chiral perturbation theory for elastic pion-pion scattering. Phys. Lett. B 1990, 235, 134. [Google Scholar] [CrossRef]
- Nieves, J.; Paón Valderrama, M.; Ruiz Arriola, E. The Inverse amplitude method in pi pi scattering in chiral perturbation theory to two loops. Phys. Rev. D 2002, 65, 036002. [Google Scholar] [CrossRef]
- Basdevant, J.L.; Bessis, D.; Zinn-Justin, J. Padé approximants in strong interactions. Two-body pion and kaon systems. Nuovo Cimento A 1969, 60, 185. [Google Scholar] [CrossRef]
- Basdevant, J.L.; Lee, B.W. Pade approximation in the σ model unitary ππ amplitudes with the current algebra constraints. Nuovo Cimento A 1969, 60, 185. [Google Scholar] [CrossRef]
- Basdevant, J.L. The Padé approximation and its physical applications. Fortschritte der Physik 1972, 20, 283. [Google Scholar] [CrossRef]
- Oller, J.A.; Roca, L. Scalar radius of the pion and zeros in the form factor. Phys. Lett. B 2007, 651, 139. [Google Scholar] [CrossRef]
- Guo, Z.-H.; Oller, J.A.; Ruiz de Elvira, J. Chiral dynamics in form factors, spectral-function sum rules, meson-meson scattering and semi-local duality. Phys. Rev. D 2012, 86, 054006. [Google Scholar] [CrossRef]
- Pennington, M.R. Sigma coupling to photons: Hidden scalar in γγ → π0π0. Phys. Rev. Lett. 2006, 97, 011601. [Google Scholar] [CrossRef]
- Oller, J.A.; Roca, L.; Schat, C. Improved dispersion relations for γγ → π0π0. Phys. Lett. B 2008, 659, 201. [Google Scholar] [CrossRef]
- Jamin, M.; Oller, J.A.; Pich, A. Strangeness changing scalar form-factors. Nucl. Phys. B 2002, 622, 279. [Google Scholar] [CrossRef]
- Gasser, J.; Meißner, U.-G. Chiral expansion of pion form-factors beyond one loop. Nucl. Phys. B 1991, 357, 90. [Google Scholar] [CrossRef]
- Protopopescu, S.D.; Alson-Garnjost, M. ππ Partial wave analysis from reactions π+p → π+π-Δ++ and π+p → K+K-Δ++ at 7.1-GeV/c. Phys. Rev. D 1973, 7, 1279. [Google Scholar] [CrossRef]
- Estabrooks, P.; Martin, A.D. ππ phase-shift analysis below the KK threshold. Nucl. Phys. B 1974, 79, 301. [Google Scholar] [CrossRef]
- Barkov, L.M.; Chilingarov, A.G.; Eidelman, S.I.; Khazin, B.I.; Lelchuk, M.Y.; Okhapkin, V.S.; Pakhtusova, E.V.; Redin, S.I.; Ryskulov, N.M.; Shatunov, Y.M.; et al. Electromagnetic Pion Form-Factor in the Timelike Region. Nucl. Phys. B 1985, 256, 365. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E.; Palomar, J.E. Pion and kaon vector form-factors. Phys. Rev. D 2001, 63, 114009. [Google Scholar] [CrossRef]
- Weinberg, S. The U(1) Problem. Phys. Rev. D 1975, 11, 3583. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. η → 3π to one loop. Nucl. Phys. B 1985, 250, 539. [Google Scholar] [CrossRef][Green Version]
- Bijnens, J.; Ghorbani, K. η → 3π at two loops in chiral perturbation theory. J. High Energy Phys. 2007, 20071, 030. [Google Scholar] [CrossRef][Green Version]
- Beisert, N.; Borasoy, B. Hadronic decays of eta and eta-prime with coupled channels. Nucl. Phys. A 2003, 716, 186. [Google Scholar] [CrossRef]
- Borasoy, B.; Nissler, R. Hadronic η and η′ decays. Eur. Phys. J. A 2005, 26, 383. [Google Scholar] [CrossRef]
- Kambor, J.; Wiesendanger, C.; Wyler, D. Final-state interactions and Khuri-Treiman equations in η → 3π decays. Nucl. Phys. B 1996, 465, 215. [Google Scholar] [CrossRef][Green Version]
- Anisovich, A.V.; Leutwyler, H. Dispersive analysis of the decay η → 3π. Phys. Lett. B 1996, 375, 335. [Google Scholar] [CrossRef][Green Version]
- Guo, P.; Danilkin, I.V.; Fernández-Ramírez, C.; Mathieu, V.; Szczepaniak, A.P. Three-body final state interaction in η → 3π updated. Phys. Lett. B 2017, 771, 497. [Google Scholar] [CrossRef]
- Colangelo, G.; Lanz, S.; Leutwyler, H.; Passemar, E. Dispersive analysis of η → 3π. Eur. Phys. J. C 2018, 78, 947. [Google Scholar] [CrossRef]
- Albaladejo, M.; Moussallam, B. Extended chiral Khuri-Treiman formalism for η → 3π and the role of the a0(980), f0(980) resonances. Eur. Phys. J. C 2017, 77, 508. [Google Scholar] [CrossRef]
- Descotes-Genon, S.; Moussallam, B. Analyticity of ηπ isospin-violating form factors and the τ → ηπν second-class decay. Eur. Phys. J. C 2014, 74, 2946. [Google Scholar] [CrossRef]
- Mandelstam, S. Unitarity condition below physical thresholds in the normal and anomalous cases. Phys. Rev. Lett. 1960, 4, 84. [Google Scholar] [CrossRef]
- Oller, J.A. The Case of a WW dynamical scalar resonance within a chiral effective description of the strongly interacting Higgs sector. Phys. Lett. B 2000, 477, 187. [Google Scholar] [CrossRef][Green Version]
- Meißner, U.-G.; Oller, J.A. J/ψ → ϕππ(K) decays, chiral dynamics and OZI violation. Nucl. Phys. A 2001, 679, 671. [Google Scholar] [CrossRef][Green Version]
- Guo, Z.-H.; Oller, J.A.; Ríos, G. Nucleon-nucleon scattering from the dispersive N/D method: Next-to-leading order study. Phys. Rev. C 2014, 89, 014002. [Google Scholar] [CrossRef]
- Castillejo, L.; Dalitz, R.H.; Dyson, F.J. Low’s Scattering Equation for the Charged and Neutral Scalar Theories. Phys. Rev. 1956, 101, 453. [Google Scholar] [CrossRef]
- Dyson, F.J. Meaning of the solutions of Low’s scattering equation. Phys. Rev. 1957, 106, 157. [Google Scholar] [CrossRef]
- Kang, X.W.; Oller, J.A. Different pole structures in line shapes of the X(3872). Eur. Phys. J. C 2017, 77, 399. [Google Scholar] [CrossRef]
- Kang, X.W.; Oller, J.A. Nature of X(3872) from the line shape. In Proceedings of the 18th International Conference on Hadron Spectroscopy and Structure, Guilin, China, 16–21 August 2019. [Google Scholar]
- Guo, Z.H.; Liu, L.; Meißner, U.G.; Oller, J.A.; Rusetsky, A. Towards a precise determination of the scattering amplitudes of the charmed and light-flavor pseudoscalar mesons. Eur. Phys. J. C 2019, 79, 13. [Google Scholar] [CrossRef]
- Guo, Z.H.; Liu, L.; Meißner, U.-G.; Oller, J.A.; Rusetsky, A. Chiral study of the a0(980) resonance and πη scattering phase shifts in light of a recent lattice simulation. Phys. Rev. D 2017, 95, 054004. [Google Scholar] [CrossRef]
- Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J. Two-pole structure of the D0*(2400). Phys. Lett. B 2017, 767, 465. [Google Scholar] [CrossRef]
- Oller, J.A.; Roca, L. Non-perturbative study of the light pseudoscalar masses in chiral dynamics. Eur. Phys. J. A 2007, 31, 534. [Google Scholar] [CrossRef]
- Oller, J.A. The Mixing angle of the lightest scalar nonet. Nucl. Phys. A 2003, 727, 353. [Google Scholar] [CrossRef][Green Version]
- Guo, Z.-H.; Oller, J.A. Resonances from meson-meson scattering in U(3) CHPT. Phys. Rev. D 2011, 84, 034005. [Google Scholar] [CrossRef]
- Albaladejo, M.; Oller, J.A. Identification of a scalar glueball. Phys. Rev. Lett. 2008, 101, 252002. [Google Scholar] [CrossRef] [PubMed]
- Jamin, M.; Oller, J.A.; Pich, A. S-wave Kπ scattering in chiral perturbation theory with resonances. Nucl. Phys. B 2000, 587, 331. [Google Scholar] [CrossRef]
- Albaladejo, M.; Oller, J.A. On the size of the σ meson and its nature. Phys. Rev. D 2012, 86, 034003. [Google Scholar] [CrossRef]
- Guo, Z.-H.; Oller, J.A. Meson-baryon reactions with strangeness −1 within a chiral framework. Phys. Rev. C 2013, 87, 035202. [Google Scholar] [CrossRef]
- Khemchandani, K.P.; Martinez Torres, A.; Oller, J.A. Hyperon resonances coupled to pseudoscalar- and vector-baryon channels. Phys. Rev. C 2019, 100, 015208. [Google Scholar] [CrossRef]
- Khemchandani, K.P.; Martinez Torres, A.; Oller, J.A. Hyperon resonances and meson-baryon interactions in isospin 1. In Proceedings of the 18th International Conference on Hadron Spectroscopy and Structure, Guilin, China, 16–21 August 2019. [Google Scholar]
- Kang, X.W.; Oller, J.A. P-wave coupled-channel scattering of Bsπ, Bs*π, B, B* and the puzzling X(5568). Phys. Rev. D 2016, 94, 054010. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E.; Pelaez, J.R. Nonperturbative approach to effective chiral Lagrangians and meson interactions. Phys. Rev. Lett. 1998, 80, 3452. [Google Scholar] [CrossRef]
- Ecker, G.; Gasser, J.; Pich, A.; de Rafael, E. The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys. B 1989, 321, 311. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E.; Ramos, A. Chiral unitary approach to meson-meson and meson-baryon interactions and nuclear applications. Prog. Part. Nucl. Phys. 2000, 45, 157. [Google Scholar] [CrossRef]
- Igi, K.; Hikasa, K.-I. Another look at ππ scattering in the scalar channel. Phys. Rev. D 1999, 59, 034005. [Google Scholar] [CrossRef]
- Gülmez, D.; Meißner, U.-G.; Oller, J.A. A chiral covariant approach to ρρ scattering. Eur. Phys. J. C 2017, 77, 460. [Google Scholar] [CrossRef]
- Bando, M.; Kugo, T.; Uehara, S.; Yamawaki, K.; Yanagida, T. Is the ρ meson a dynamical gauge boson of hidden local symmetry. Phys. Rev. Lett. 1985, 54, 1215. [Google Scholar] [CrossRef] [PubMed]
- Bando, M.; Kugo, T.; Yamawaki, K. Nonlinear Realization and Hidden Local Symmetries. Phys. Rep. 1988, 164, 217. [Google Scholar] [CrossRef]
- Du, M.-L.; Gülmez, D.; Guo, F.-K.; Meißner, U.-G.; Wang, Q. Interactions between vector mesons and dynamically generated resonances. Eur. Phys. J. C. 2018, 78, 988. [Google Scholar] [CrossRef]
- Molina, R.; Nicmorus, D.; Oset, E. The ρρ interaction in the hidden gauge formalism and the f0(1370) and f2(1270) resonances. Phys. Rev. D 2008, 78, 114018. [Google Scholar] [CrossRef]
- Geng, L.S.; Oset, E. Vector meson-vector meson interaction in a hidden gauge unitary approach. Phys. Rev. D 2009, 79, 074009. [Google Scholar] [CrossRef]
- Geng, L.S.; Molina, R.; Oset, E. On the chiral covariant approach to ρρ scattering. Chin. Phys. C 2017, 41, 124101. [Google Scholar] [CrossRef]
- Molina, R.; Geng, L.S.; Oset, E. Comments on the dispersion relation method to vector–vector interaction. PTEP 2019, 2019, 103B05. [Google Scholar] [CrossRef]
- Babelon, O.; Basdevant, J.-L.; Caillerie, D.; Mennessier, G. Unitarity and inelastic final-state interactions. Nucl. Phys. B 1976, 113, 445. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E. Theoretical study of the γγ →meson-meson reaction. Nucl. Phys. A 1998, 629, 739. [Google Scholar] [CrossRef]
- Oller, J.A. Final state interactions in D decays. Phys. Rev. D 2005, 71, 054030. [Google Scholar] [CrossRef]
- Frank, W.M.; Land, D.J.; Spector, R.M. Singular potentials. Rev. Mod. Phys. 1971, 43, 36. [Google Scholar] [CrossRef]
- Case, K.M. Singular potentials. Phys. Rev. 1950, 80, 797. [Google Scholar] [CrossRef]
- Pavón Valderrama, M.; Ruiz Arriola, E. Renormalization of the deuteron with one pion exchange. Phys. Rev. C 2005, 72, 054002. [Google Scholar] [CrossRef]
- Pavón Valderrama, M.; Ruiz Arriola, E. Renormalization of NN interaction with chiral two pion exchange potential. Central phases and the deuteron. Phys. Rev. C 2006, 74, 054001. [Google Scholar] [CrossRef]
- Pavón Valderrama, M.; Ruiz Arriola, E. Renormalization of NN interaction with chiral two pion exchange potential: Non-central phases. Phys. Rev. C 2006, 74, 064004. [Google Scholar] [CrossRef]
- Meißner, U.-G. Two-pole structures in QCD: Facts, not fantasy! arXiv 2020, arXiv:2005.06909. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oller, J.A. Unitarization Technics in Hadron Physics with Historical Remarks. Symmetry 2020, 12, 1114. https://doi.org/10.3390/sym12071114
Oller JA. Unitarization Technics in Hadron Physics with Historical Remarks. Symmetry. 2020; 12(7):1114. https://doi.org/10.3390/sym12071114
Chicago/Turabian StyleOller, José Antonio. 2020. "Unitarization Technics in Hadron Physics with Historical Remarks" Symmetry 12, no. 7: 1114. https://doi.org/10.3390/sym12071114
APA StyleOller, J. A. (2020). Unitarization Technics in Hadron Physics with Historical Remarks. Symmetry, 12(7), 1114. https://doi.org/10.3390/sym12071114