# The Coulomb Symmetry and a Universal Representation of Rydberg Spectral Line Shapes in Magnetized Plasmas

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of the Method

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. Dipole Matrix Elements

## References

- Griem, H.R. Principles of Plasma Spectroscopy; Cambridge University Press: Cambridge, UK, 2005; Volume 2. [Google Scholar]
- Lisitsa, V.S. Atoms in Plasmas; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012; Volume 14. [Google Scholar]
- Oks, E.A. Plasma Spectroscopy: The Influence of Microwave and Laser Fields; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012; Volume 9. [Google Scholar]
- Sobel’Man, I.I.; Vainshtein, L.A.; Yukov, E.A. Excitation of Atoms and Broadening of Spectral Lines; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012; Volume 15. [Google Scholar]
- Sobel’Man, I.I. Introduction to the Theory of Atomic Spectra: International Series of Monographs in Natural Philosophy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 40. [Google Scholar]
- Oks, E. Advances in X-Ray Spectroscopy of Laser Plasmas; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Oks, E. Diagnostics of Laboratory and Astrophysical Plasmas Using Spectral Lineshapes of One-, Two-, and Three-Electron Systems; World Scientific: Singapore, 2017. [Google Scholar]
- Oks, E. Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The Physical Insight; Alpha Science International: Oxford, UK, 2006. [Google Scholar]
- Gulyaev, S.A. Profile of the Hn alpha. radio lines in a static ion field. Sov. Astron. AJ (Engl. Transl.)
**1976**, 20. Available online: http://adsabs.harvard.edu/full/1976SvA....20..573G (accessed on 20 June 2020). - Gulyaev, S.A. Profile of the Hn beta. radio lines in a static ion field. Sov. Astron.
**1978**, 22. Available online: http://adsabs.harvard.edu/full/1978SvA....22..572G (accessed on 30 July 2020). - Varshalovich, D.A.; Moskalev, A.N.; Khersonskii, V.K. Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, nj Symbols; World Scientific: Singapore, 2008. [Google Scholar]
- Bureeva, L.A.; Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S.; Calisti, A.; Talin, B.; Rosmej, F. Equivalence of the method of the kinetic equation and the fluctuating-frequency method in the theory of the broadening of spectral lines. Jetp Lett.
**2010**, 90, 647–650. [Google Scholar] [CrossRef] - Born, M.; Hund, F.; Jordan, P. Vorlesungen über Atommechanik; Springer: Berlin/Heidelberg, Germany, 1925; Volume 1. [Google Scholar]
- Fock, V.A. Zur theorie des wasserstoffatoms. Z. Phys.
**1935**, 98, 145–154. [Google Scholar] [CrossRef] - Demkov, Y.N.; Monozon, B.S.; Ostrovsky, V.N. Energy levels of a hydrogen atom in crossed electric and magnetic fields. Sov. Phys. JETP
**1970**, 30, 775–776. [Google Scholar] - Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory; Elsevier: Amsterdam, The Netherlands, 2013; Volume 3. [Google Scholar]
- Gordon, W. Zur Berechnung der Matrizen beim Wasserstoffatom. Ann. Phys.
**1929**, 394, 1031–1056. [Google Scholar] [CrossRef] [Green Version] - Bethe, H.A.; Salpeter, E.E. Quantum Mechanics of Atoms with One and Two Electrons; Pizmatgiz: Moscow, Russia, 1960. [Google Scholar]
- Dewangan, D.P. An accurate quantum expression of the z-dipole matrix element between nearby Rydberg parabolic states and the correspondence principle. J. Phys. At. Mol. Opt. Phys.
**2007**, 41, 015002. [Google Scholar] [CrossRef] - Letunov, A.Y.; Lisitsa, V.S. Stark-Zeeman and Blokhincev spectra of Rydberg atoms. J. Theor. Exp. Phys.
**2020**, 5, 131. [Google Scholar] - Letunov, A.Y.; Lisitsa, V.S. Spectra of a Rydberg Atom in Crossed Electric and Magnetic Fields. Universe
**2020**, 6, 157. [Google Scholar] [CrossRef] - Chandrasekhar, S. Stochastic problems in physics and astronomy. Rev. Mod. Phys.
**1943**, 15, 1. [Google Scholar] [CrossRef] - Mossé, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.A.; Lisitsa, V.S. A universal approach to Rydberg spectral line shapes in plasmas. J. Phys. At. Mol. Opt. Phys.
**2004**, 37, 1343. [Google Scholar] [CrossRef] - Novikov, V.G.; Vorob’ev, V.S.; D’yachkov, L.G.; Nikiforov, A.F. Effect of a magnetic field on the radiation emitted by a nonequilibrium hydrogen and deuterium plasma. J. Exp. Theor. Phys.
**2001**, 92, 441–453. [Google Scholar] [CrossRef] - Ferri, S.; Calisti, A.; Mossé, C.; Mouret, L.; Talin, B.; Gigosos, M.A.; González, M.A.; Lisitsa, V. Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas. Phys. Rev. E
**2011**, 84, 026407. [Google Scholar] [CrossRef] [PubMed] - Rosato, J.; Bufferand, H.; Koubiti, M.; Marandet, Y.; Stamm, R. A table of Balmer gamma line shapes for the diagnostic of magnetic fusion plasmas. J. Quant. Spectrosc. Radiat. Transf.
**2015**, 165, 102–107. [Google Scholar] [CrossRef] - Rosato, J.; Marandet, Y.; Stamm, R. A new table of Balmer line shapes for the diagnostic of magnetic fusion plasmas. J. Quant. Spectrosc. Radiat. Transf.
**2017**, 187, 333–337. [Google Scholar] [CrossRef] - Seaton, M.J. Atomic data for opacity calculations. XIII. Line profiles for transitions in hydrogenic ions. J. Phys. B At. Mol. Opt. Phys.
**1990**, 23, 3255. [Google Scholar] [CrossRef] - Oks, E. Review of Recent Advances in the Analytical Theory of Stark Broadening of Hydrogenic Spectral Lines in Plasmas: Applications to Laboratory Discharges and Astrophysical Objects. Atoms
**2018**, 6, 50. [Google Scholar] [CrossRef] [Green Version] - Stambulchik, E.; Maron, Y. Stark effect of high-n hydrogen-like transitions: Quasi-contiguous approximation. J. Phys. B At. Mol. Opt. Phys.
**2008**, 41, 095703. [Google Scholar] [CrossRef] [Green Version] - Gigosos, M.A.; González, M.Á. Comment on “A study of ion-dynamics and correlation effects for spectral line broadening in plasma: K-shell lines”. J. Quant. Spectrosc. Radiat. Transf.
**2007**, 105, 533–535. [Google Scholar] [CrossRef] - Stambulchik, E.; Maron, Y. Quasicontiguous frequency-fluctuation model for calculation of hydrogen and hydrogenlike Stark-broadened line shapes in plasmas. Phys. Rev. E
**2013**, 87, 053108. [Google Scholar] [CrossRef] [Green Version] - Gorbunov, A.V.; Mukhin, E.E.; Berik, E.B.; Vukolov, K.Y.; Lisitsa, V.S.; Kukushkin, A.S.; Levashova, M.G.; Barnsley, R.; Vayakis, G.; Walsh, M.J. Laser-induced fluorescence for ITER divertor plasma. Fusion Eng. Des.
**2017**, 123, 695–698. [Google Scholar] [CrossRef] - Gorbunov, A.V.; Mukhin, E.E.; Berik, E.B.; Melkumov, M.A.; Babinov, N.A.; Kurskiev, G.S.; Tolstyakov, S.Y.; Vukolov, K.Y.; Lisitsa, V.S.; Levashova, M.G.; et al. Laser-induced fluorescence of helium ions in ITER divertor. Fusion Eng. Des.
**2019**, 146, 2703–2706. [Google Scholar] [CrossRef]

**Figure 1.**Normalized intensity profile of ${D}_{\alpha}$ spectral line (transition 3-2) as the function of the energy shift. The direction of observation is perpendicular to the magnetic field, ${T}_{e}={T}_{i}=1$ eV, ${N}_{i}={N}_{e}={10}^{15}$ cm

^{−3}, $B=7$ T. Comparison of the semiclassical approach and an accurate calculation in [25].

**Figure 2.**Normalized intensity profile of ${D}_{\beta}$ spectral line (transition 4-2) as the function of the energy shift. Direction of observation perpendicular to magnetic field, ${T}_{e}={T}_{i}=1$ eV, ${N}_{i}={N}_{e}={10}^{15}$ cm

^{−3}, $B=5$ T. Comparison of the semiclassical approach and the computer modeling in [27].

**Figure 3.**Normalized intensity profile of ${P}_{\alpha}$ spectral line (transition 4-3) as the function of the energy shift. Direction of observation perpendicular to magnetic field $B=6$ T. (1) ${T}_{e}=1.75$ eV, ${T}_{i}=1.77$ eV, ${N}_{i}=1.81\times {10}^{12}$ cm

^{−3}, ${N}_{e}=2.17\times {10}^{15}$ cm

^{−3}; (2) ${T}_{e}=43.27$ eV, ${T}_{i}=49.47$ eV, ${N}_{i}=1.76\times {10}^{10}$ cm

^{−3}, ${N}_{e}=1.36\times {10}^{14}$ cm

^{−3}; (3) ${T}_{e}=50.80$ eV, ${T}_{i}=77.16$ eV, ${N}_{i}=8.11\times {10}^{9}$ cm

^{−3}, ${N}_{e}=6.96\times {10}^{13}$ cm

^{−3}; (4) ${T}_{e}=59.65$ eV, ${T}_{i}=99.67$ eV, ${N}_{i}=1.70\times {10}^{9}$ cm

^{−3}, ${N}_{e}=8.08\times {10}^{13}$ cm

^{−3}.

**Figure 4.**Normalized intensity profile of spectral line (transition 5-4) as a function of the energy shift. Hydrogen-like Helium ion; ${T}_{e}={T}_{i}=3$ eV, ${N}_{i}={N}_{e}={10}^{15}$ cm

^{−3}, $B=8$ T.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Letunov, A.; Lisitsa, V.
The Coulomb Symmetry and a Universal Representation of Rydberg Spectral Line Shapes in Magnetized Plasmas. *Symmetry* **2020**, *12*, 1922.
https://doi.org/10.3390/sym12111922

**AMA Style**

Letunov A, Lisitsa V.
The Coulomb Symmetry and a Universal Representation of Rydberg Spectral Line Shapes in Magnetized Plasmas. *Symmetry*. 2020; 12(11):1922.
https://doi.org/10.3390/sym12111922

**Chicago/Turabian Style**

Letunov, Andrei, and Valery Lisitsa.
2020. "The Coulomb Symmetry and a Universal Representation of Rydberg Spectral Line Shapes in Magnetized Plasmas" *Symmetry* 12, no. 11: 1922.
https://doi.org/10.3390/sym12111922