# Applications of Canonical Quantum Gravity to Cosmology

## Abstract

**:**

## 1. Introduction

**Theorem**

**1.**

**Remark**

**1.**

## 2. Dark-Energy Density

**Lemma**

**1.**

**Proof.**

**Theorem**

**2.**

**Proof.**

## 3. Inflationary Period

## 4. Dark Matter

**Proof.**

**Lemma**

**3.**

**Proof.**

**Theorem**

**3.**

**Proof.**

## 5. Missing Antimatter

## 6. Spherically Symmetric Eigenfunctions in Hyperbolic Space

## Funding

## Conflicts of Interest

## References

- Arnowitt, R.; Deser, S.; Misner, C.W. The dynamics of general relativity. In Gravitation: An Introduction to Current Research; Witten, L., Ed.; John Wiley: New York, NY, USA, 1962; pp. 227–265. [Google Scholar]
- Dirac, P.A.M. Lectures on Quantum Mechanics; Second printing of the 1964 original; Belfer Graduate School of Science Monographs Series; Belfer Graduate School of Science: New York, NY, USA, 1967; Volume 2. [Google Scholar]
- DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev.
**1967**, 160, 1113–1148. [Google Scholar] [CrossRef] [Green Version] - Kiefer, C. Quantum Gravity, 2nd ed.; International Series of Monographs on Physics; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge Monographs on Mathematical Physics, With a foreword by Chris Isham; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gerhardt, C. Quantum cosmological Friedman models with an initial singularity. Class. Quantum Grav.
**2009**, 26, 015001. [Google Scholar] [CrossRef] - Gerhardt, C. The quantization of gravity in globally hyperbolic spacetimes. Adv. Theor. Math. Phys.
**2013**, 17, 1357–1391. [Google Scholar] [CrossRef] [Green Version] - Gerhardt, C. A unified quantum theory I: gravity interacting with a Yang-Mills field. Adv. Theor. Math. Phys.
**2014**, 18, 1043–1062. [Google Scholar] [CrossRef] - Gerhardt, C. The quantization of gravity. Adv. Theor. Math. Phys.
**2018**, 22, 709–757. [Google Scholar] [CrossRef] - Gerhardt, C. The Quantization of Gravity, 1st ed.; Fundamental Theories of Physics; Springer: Cham, Switzerland, 2018; Volume 194. [Google Scholar] [CrossRef]
- Gerhardt, C. The quantization of a black hole. arXiv
**2016**, arXiv:1608.08209. [Google Scholar] - Gerhardt, C. The quantum development of an asymptotically Euclidean Cauchy hypersurface. arXiv
**2016**, arXiv:1612.03469. [Google Scholar] - Gerhardt, C. The quantization of a Kerr-AdS black hole. Adv. Math. Phys.
**2018**, 2018. [Google Scholar] [CrossRef] - Capozziello, S.; Lobo, F.S.; Mimoso, J.P. Generalized energy conditions in Extended Theories of Gravity. Phys. Rev. D
**2015**, 91, 124019. [Google Scholar] [CrossRef] - Choudhury, S.; Sen, M.; Sadhukhan, S. Can dark matter be an artifact of extended theories of gravity? Eur. Phys. J. C
**2016**, 76, 494. [Google Scholar] [CrossRef] - Anker, J.P.; Pierfelice, V. Wave and Klein-Gordon equations on hyperbolic spaces. Anal. PDE
**2014**, 7, 953–995. [Google Scholar] [CrossRef] - Anker, J.P.; Pierfelice, V.; Vallarino, M. The wave equation on hyperbolic spaces. arXiv
**2010**, arXiv:1010.2372. [Google Scholar] [CrossRef] - Lions, J.-L.; Magenes, E. Non-Homogeneous Boundary Value Problems and Applications; Kenneth, P., Translator; Die Grundlehren der mathematischen Wissenschaften, Band 181; Springer: New York, NY, USA, 1972; Volume I. [Google Scholar]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gerhardt, C.
Applications of Canonical Quantum Gravity to Cosmology. *Symmetry* **2019**, *11*, 1005.
https://doi.org/10.3390/sym11081005

**AMA Style**

Gerhardt C.
Applications of Canonical Quantum Gravity to Cosmology. *Symmetry*. 2019; 11(8):1005.
https://doi.org/10.3390/sym11081005

**Chicago/Turabian Style**

Gerhardt, Claus.
2019. "Applications of Canonical Quantum Gravity to Cosmology" *Symmetry* 11, no. 8: 1005.
https://doi.org/10.3390/sym11081005