# Adaptive Backstepping Sliding Mode Control for the Vertical Launching Barrel-Cover of the Underwater Missile

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Nonlinear Modeling of the Vertical Launching Barrel-cover System

## 3. Controller Design

#### 3.1. Design of Disturbance Observer

#### 3.2. Adaptive Backstepping Controller Design

**Step 1**

**Step 2**

**Step 3**

## 4. Simulation Verification

#### 4.1. Simulation Verification of Conventional Sliding Mode Controller

#### 4.2. Simulation Verification of Adaptive Backstepping Sliding Mode Controller

## 5. Experimental Verification

#### 5.1. Experimental Set-Up

#### 5.2. Experimental Result and Analysis

#### 5.3. Quantitative Analysis

#### 5.4. Experimental Verification of Controller in Different Water Depth Environment

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Zhang, L.; Wei, C.Z.; Jing, L.; Cui, N.G. Fixed-time sliding mode attitude tracking control for a submarine-launched missile with multiple disturbances. Nonlinear Dyn.
**2018**, 93, 2543–2563. [Google Scholar] [CrossRef] - Wang, Y.W.; Huang, C.G.; Fang, X.; Wu, X.C.; Du, T.Z. On the internal collapse phenomenon at the closure of cavitation bubbles in a deceleration process of underwater vertical launching. Appl. Ocean Res.
**2016**, 56, 157–165. [Google Scholar] [CrossRef] [Green Version] - Lippert, J.R. Battery power supply for the Navy Electromagnetic Torpedo Launcher. IEEE Trans. Magn.
**1993**, 29, 1009–1012. [Google Scholar] [CrossRef] - Zhang, J.T.; Cheng, D.F.; Liu, Y.F.; Zhu, G.L. Adaptive Fuzzy Sliding Mode Control for Missile Electro-hydraulic Servo Mechanism. In Proceedings of the 7th World Congress on Intelligent Control & Automation, Chongqing, China, 25–27 June 2008; pp. 5197–5202. [Google Scholar]
- Li, X.; Zhu, Z.C.; Rui, G.C.; Cheng, D.; Shen, G.; Tang, Y. Force Loading Tracking Control of an Electro-Hydraulic Actuator Based on a Nonlinear Adaptive Fuzzy Backstepping Control Scheme. Symmetry
**2018**, 10, 155. [Google Scholar] [CrossRef] - Jin, M.R.; Wang, Q.F. Energy-saving control for electro-hydraulic systems under time-varying negative loads. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
**2018**, 232, 608–621. [Google Scholar] [CrossRef] - Kim, W.; Won, D.; Shin, D.; Chung, C.C. Output feedback nonlinear control for electro-hydraulic systems. Mechatronics
**2012**, 22, 766–777. [Google Scholar] [CrossRef] - Han, S.S.; Jiao, Z.X.; Wang, C.W.; Shang, Y.X. Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator. Chin. J Aeronaut.
**2015**, 28, 294–304. [Google Scholar] [Green Version] - Guo, Q.; Yin, J.M.; Yu, T.; Jiang, D. Coupled-disturbance-observer-based position tracking control for a cascade electro-hydraulic system. ISA Trans.
**2017**, 68, 367–380. [Google Scholar] [CrossRef] - Sun, M.F.; Li, J.X.; Fang, Y.M. Adaptive cross-coupled sliding mode control for synchronization of dual-cylinder electro-hydraulic servo systems. In Proceedings of the Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 3361–3366. [Google Scholar]
- Petritoli, E.; Leccese, F. A high accuracy attitude system for a tailless underwater glider. IMEKO TC19 Workshop Metrosea
**2017**, 10, 7–12. [Google Scholar] - Chiang, M.H. The velocity control of an electro-hydraulic displacement-controlled system using adaptive fuzzy controller with self-tuning fuzzy sliding mode compensation. Asian J. Control
**2011**, 13, 492–504. [Google Scholar] [CrossRef] - Guo, Q.; Sun, P.; Yin, J.M.; Yu, T.; Jiang, D. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter. ISA Trans.
**2016**, 62, 202–214. [Google Scholar] [CrossRef] - Ayinde, B.O.; El Ferik, S.; Ibrir, S.; Feki, M.; Siddiqui, B.A. Backstepping control of an electro-hydraulic servo system subject to disturbance and parameter uncertainty. In Proceedings of the GCC Conference & Exhibition, Muscat, Oman, 1–4 February 2015. [Google Scholar]
- Ahn, K.K.; Nam, D.N.C.; Jin, M. Adaptive backstepping control of an electrohydraulic actuator. IEEE-ASME Trans. Mechatron.
**2013**, 19, 987–995. [Google Scholar] [CrossRef] - Yao, J.Y.; Deng, W.X.; Jiao, Z.X. Adaptive control of hydraulic actuators with lugre friction compensation. IEEE Trans. Ind. Electron.
**2015**, 62, 6469–6477. [Google Scholar] [CrossRef] - Guo, K.; Wei, J.H.; Fang, J.H.; Feng, R.L.; Wang, X.C. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer. Mechatronics
**2015**, 27, 47–56. [Google Scholar] [CrossRef] - Yang, G.C.; Yao, J.Y.; Le, G.G.; Ma, D.W. Adaptive integral robust control of hydraulic systems with asymptotic tracking. Mechatronics
**2016**, 40, 78–86. [Google Scholar] [CrossRef] - Zerfsli, E. Adaptive Extended Kalman Filter for Speed-Sensorless Control of Induction Motors. IEEE Trans. Energy Convers.
**2019**, 34, 789–800. [Google Scholar] - Navvabi, H.; Markazi, A.H.D. Hybrid position/force control of Stewart Manipulator using Extended Adaptive Fuzzy Sliding Mode Controller. ISA Trans.
**2019**, 88, 280–295. [Google Scholar] [CrossRef] - Wang, J.Q.; Zou, Z.J.; Wang, T. High-gain extended state observer based adaptive sliding mode path following control for an underactuated vessel sailing in restricted waters. Appl. Sci.
**2019**, 9, 1102. [Google Scholar] [CrossRef] - Gao, H.; Ma, G.F.; Lv, Y.Y.; Guo, Y.N. Forecasting-based data-driven model-free adaptive sliding mode attitude control of combined spacecraft. Aerosp. Sci. Technol.
**2019**, 86, 364–374. [Google Scholar] [CrossRef] - Hu, X.X.; Wu, L.G.; Hu, C.H.; Gao, H.J. Adaptive fuzzy integral sliding mode control for flexible air-breathing hypersonic vehicles subject to input nonlinearity. J. Aerosp. Eng.
**2013**, 26, 721–734. [Google Scholar] [CrossRef] - Min, W.; Liu, Q.Y. An improved adaptive fuzzy backstepping control for nonlinear mechanical systems with mismatched uncertainties. Automatika
**2019**, 60, 1–10. [Google Scholar] [CrossRef] - Wang, C.W.; Jiao, Z.X.; Wu, S.; Shang, Y.X. Nonlinear adaptive torque control of electro-hydraulic load system with external active motion disturbance. Mechatronics
**2014**, 24, 32–40. [Google Scholar] [CrossRef] - Weiland, C.J.; Vlachos, P.P.; Yagla, J.J. Concept analysis and laboratory observations on a water piercing missile launcher. Ocean Eng.
**2010**, 37, 959–965. [Google Scholar] [CrossRef] - Guo, K.; Wei, J.H.; Tian, Q.Y. Disturbance observer based position tracking of electro-hydraulic actuator. J. Cent. South Univ.
**2015**, 22, 2158–2165. [Google Scholar] [CrossRef] - Shen, G.; Zhu, Z.C.; Zhao, J.S.; Zhu, W.D.; Tang, Y.; Li, X. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control. ISA Trans.
**2016**, 67, 356. [Google Scholar] [CrossRef] - Guan, C.; Pan, S.X. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Eng. Pract.
**2008**, 16, 1275–1284. [Google Scholar] [CrossRef] - Yao, B.; Bu, F.; Chiu, G.T.C. Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators. Int. J. Control
**2001**, 74, 761–775. [Google Scholar] [CrossRef] - Zhu, Z.C.; Li, X.; Shen, G.; Zhu, W.D. Wire rope tension control of hoisting systems using a robust nonlinear adaptive backstepping control scheme. ISA Trans.
**2018**, 72, 256–272. [Google Scholar] [CrossRef] - Xu, Y.; Lu, Z.F.; Shan, X.; Jia, W.H.; Wei, B.; Wang, Y.Q. Study on an Automatic Parking Method Based on the Sliding Mode Variable Structure and Fuzzy Logical Control. Symmetry
**2018**, 10, 523. [Google Scholar] [CrossRef] - Has, Z.; Rahmat, M.F.; Husain, A.R.; Ahmad, M.N. Robust precision control for a class of electro-hydraulic actuator system based on disturbance observer. Int. J. Precis. Eng. Manuf.
**2015**, 16, 1753–1760. [Google Scholar] [CrossRef] - Wu, G.; Meng, X. Nonlinear disturbance observer based robust backstepping control for a flexible air-breathing hypersonic vehicle. Aerosp. Sci. Technol.
**2016**, 54, 174–182. [Google Scholar] [CrossRef] - Kayacan, E. Sliding mode control for systems with mismatched time-varying uncertainties via a self-learning disturbance observer. Trans. Inst. Meas. Control
**2019**, 41, 2039–2052. [Google Scholar] [CrossRef] - Chang, J.L.; Wu, T.C. Disturbance observer based output feedback controller design for systems with mismatched disturbance. Int. J. Control Autom.
**2018**, 16, 1775–1782. [Google Scholar] [CrossRef] - Lee, D. Nonlinear disturbance observer-based robust control for spacecraft formation flying. Aerosp. Sci. Technol.
**2018**, 76, 82–90. [Google Scholar] [CrossRef] - Ma, J.J.; Li, P.; Zheng, Z.Q. Disturbance observer based dynamic surface flight control for an uncertain aircraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
**2018**, 232, 729–744. [Google Scholar] [CrossRef] - Chiang, M.H.; Lee, L.W.; Liu, H.H. Adaptive fuzzy controller with self-tuning fuzzy sliding-mode compensation for position control of an electro-hydraulic displacement-controlled system. J. Intell. Fuzzy Syst.
**2014**, 26, 815–830. [Google Scholar] - Kim, H.M.; Park, S.H.; Song, J.H.; Kim, J.S. Robust Position Control of Electro-Hydraulic Actuator Systems Using the Adaptive Back-Stepping Control Scheme. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
**2010**, 224, 737–746. [Google Scholar] [CrossRef]

**Figure 8.**Schematic diagram of the control of the vertical launching barrel-cover of the underwater missile.

Parameter | Numerical Value |
---|---|

barrel-cover quality/kg | 350 |

drive form | electro-hydraulic servo |

control method | position control |

pressure/MPa | 20 |

Opening angle/° | 94.8~95.2 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yin, S.; Shen, G.
Adaptive Backstepping Sliding Mode Control for the Vertical Launching Barrel-Cover of the Underwater Missile. *Symmetry* **2019**, *11*, 878.
https://doi.org/10.3390/sym11070878

**AMA Style**

Yin S, Shen G.
Adaptive Backstepping Sliding Mode Control for the Vertical Launching Barrel-Cover of the Underwater Missile. *Symmetry*. 2019; 11(7):878.
https://doi.org/10.3390/sym11070878

**Chicago/Turabian Style**

Yin, ShiCai, and Gang Shen.
2019. "Adaptive Backstepping Sliding Mode Control for the Vertical Launching Barrel-Cover of the Underwater Missile" *Symmetry* 11, no. 7: 878.
https://doi.org/10.3390/sym11070878