# Digital Watermarking Image Compression Method Based on Symmetric Encryption Algorithms

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Algorithmic Definitions

#### 2.1. Digital Watermarking Image Based on Symmetric Encryption

#### 2.1.1. Wavelet Transform of Image

#### 2.1.2. Watermarking Generation (Arnold Permutation)

#### 2.1.3. Watermarking Embedding and Extraction

**(1) Watermarking Embedding Method**

- (1)
- Arnold transform is used to scramble the watermarking image, and the scrambled watermarking is recorded as ${W}_{i}$.
- (2)
- The original image $F$ is transformed by a three-level wavelet transform to obtain sub-images ${F}_{i}^{k}$ in different directions at different resolutions.
- (3)
- ${W}_{i}$ is decomposed into four subgraphs ${W}_{i}^{k}$ by first-order wavelet decomposition.
- (4)
- The data in the watermarking and the data in the original image subgraph are coded in blocks according to the following formula:$${C}_{i}^{\prime}={C}_{i}\left({F}_{i}^{k}+\alpha {W}_{i}^{k}\right)\left(k=0,1,2,3\right),$$

**(2) Watermarking extraction method**

#### 2.1.4. Watermarking Detection

#### 2.2. Design of Symmetric Encryption Digital Watermarking Image Compression Algorithm

^{−4}cd/m

^{2}to 1 × 10

^{10}cd/m

^{2}(candela per square meter), the output luma range is from 0 to 4000. When luma is taken as an integer, it can be expressed by 16-bit integers.

## 3. Results

#### 3.1. Transparency Experiment

#### 3.2. Anti-Brightness/Contrast Attack Performance Detection

#### 3.3. Testing of Shear Resistance

#### 3.4. Anti-Noise Performance Testing

#### 3.5. Digital Watermarking Image Compression Detection Based on Symmetric Encryption

^{−4}, 10

^{10}].

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Yin, X.; Huang, W.Q. Research on Color QR Code Watermarking Technology Based on Chaos Theory. J. Commun.
**2018**, 373, 54–62. [Google Scholar] - Wei, Q.L.; Sun, Q.Q. Digital Watermarking Algorithm Based on Contourlet Transform and SVD. Comput. Eng. Des.
**2017**, 38, 2369–2373. [Google Scholar] - Zhan, W.; Duan, X.H.; Yu, Y.C. Research on Image Compression Coding Method Based on Wavelet Transform. Comput. Technol. Dev.
**2018**, 28, 21–25. [Google Scholar] - Gu, F.M. The Compressed Video Image Multiple Digital Watermarking Hiding Method Simulation. Comput. Simul.
**2017**, 34, 199–202. [Google Scholar] - Zeng, C.; Yang, W.P. Research on Digital Watermarking Algorithm Based on DCT Transform for Image Copyright Protection. Bull. Sci. Technol.
**2018**, 109, 119–122. [Google Scholar] - Wu, C.M.; Zheng, H.K.; Wang, Y.J.; Fu, R.; Yu, M.; Sun, Y. An Image Compression Algorithm Based on Multi-node Cooperation in Wireless Multimedia Sensor Networks. Trans. Beijing Inst. Technol.
**2018**, 38, 109–114. [Google Scholar] - Li, S.Q.; Li, G.Q.; Xian, C.H. Eigenvector-Based Watermarking for 3D MeshModels. J. Graph.
**2017**, 38, 155–161. [Google Scholar] - Dahmani, Z.; Abdellaoui, M.A. Ona Three Point Boundary Value Problem of Arbitrary Order. J. Interdiscip. Math.
**2016**, 19, 893–906. [Google Scholar] [CrossRef] - Liao, R.H.; Sun, C.Q.; Liu, H. Fractional Fourier M-Band Dual-tree Complex Waveletand SVD Based Digital Watermarking Algorithm. Control Eng. China
**2017**, 24, 1432–1438. [Google Scholar] - Delgado, J.; Peña, J.M. Monotonicity Preserving Representations of Curves and Surfaces. Appl. Math. Nonlinear Sci.
**2016**, 1, 517–528. [Google Scholar] [CrossRef] [Green Version] - Gong, M.L.; Zhang, W.; Wang, F.C. Image Compression Confidentiality Based on Compression Sensing Algorithm. J. Detect. Control
**2017**, 39, 106–110. [Google Scholar] - Ma, Z.; Sun, Y. An Application of -Expansion Method to the Dispersive Water System. J. Interdiscip. Math.
**2016**, 19, 335–344. [Google Scholar] [CrossRef] - Wang, C.H.; Han, D. An Effective Blind Forensics Detection Scheme of Median Filtering Image. J. China Acad. Electron. Inf. Technol.
**2017**, 12, 668–674. [Google Scholar] - Shen, Y.X.; Wu, J.; Wu, D.H. Fault Diagnosis Technology for Three-level Inverter Based on Reconstructive Phase Space and SVM. J. Power Supply
**2017**, 15, 114–121. [Google Scholar] - Maldonado, M.; Prada, J.; Senosiain, M.J. On Linear Operators and Bases on Köthe Spaces. Appl. Math. Nonlinear Sci.
**2016**, 1, 617–624. [Google Scholar] [CrossRef] [Green Version] - Liu, L.P.; Yin, J.T. Image Analysis of Chromium Doping on LiMn
_{2}O_{4}Spinel High Temperature Solubility. Chin. J. Power Sources**2017**, 41, 1121–1123. [Google Scholar] - Lai, J.L.; Zhang, F.Q. Multimedia Image Reconstruction Based on Virtual Reality. Autom. Instrum.
**2018**, 46, 236–239. [Google Scholar] - Zhang, H. Digital Image Watermarking Algorithm Based on Compressive Sensing and Discrete Cosine Transform. J. Jilin Univ. (Sci. Ed.)
**2017**, 55, 1504–1510. [Google Scholar] - Liang, L.X.; Tang, L.H.; Bai, W.W. Simulation of Double Digital Watermarking Algorithm for Color Image. Comput. Simul.
**2017**, 34, 150–153. [Google Scholar] - Pyskunov, S.O.; Maksimyk, Y.V.; Valer, V.V. Finite Element Analysis of Influence of Non-homogenous Temperature Field on Designed Lifetime of Spatial Structural Elements under Creep Conditions. Appl. Math. Nonlinear Sci.
**2016**, 1, 253–262. [Google Scholar] [CrossRef] [Green Version]

Analytical Low Pass Filter | Analytical High Pass Filter | Synthetic Low Pass Filter | Synthetic High Pass Filter |
---|---|---|---|

0.026748757411 | 0 | 0 | 0.026748757411 |

−0.016864118443 | 0.091271763114 | −0.091271763 | 0.016864118443 |

−0.078223266529 | −0.057543526229 | −0.057543526229 | −0.078223266529 |

0.266864118443 | −0.591271763114 | 0.591271763114 | −0.266864118443 |

0.602949018236 | 1.11508705 | 1.11508705 | 0.602949018236 |

0.266864118443 | −0.591271763114 | 0.591271763 | −0.266864118443 |

−0.078223266529 | −0.057543526229 | −0.057543526229 | −0.078223266529 |

−0.016864118443 | 0.091271763114 | −0.091271763114 | 0.016864118443 |

0.026748757411 | 0 | 0 | 0.026748757411 |

PSNR | PSNR_{R} | PSNR_{G} | PSNR_{B} | |
---|---|---|---|---|

a | 45.7884 | 44.5741 | 45.7002 | 47.0909 |

b | 45.6866 | 44.9539 | 45.6302 | 46.4757 |

c | 45.1864 | 44.3810 | 45.0482 | 46.1301 |

d | 45.6693 | 45.0324 | 45.6056 | 46.3700 |

e | 46.0259 | 45.2301 | 46.0145 | 46.8602 |

f | 45.8591 | 45.0048 | 45.6675 | 46.6050 |

g | 46.6032 | 45.8702 | 46.2284 | 46.6032 |

h | 44.8100 | - | - | - |

i | 45.6100 | - | - | - |

Image Name | Original Size (byte) | Compressed Graph Size (byte) | Pixel Percentages of Image Differences Visible to the Naked Eye | Root Mean Square Error | Time (second) | |
---|---|---|---|---|---|---|

Probability >75% | Probability >95% | |||||

Crissy Field. exr | 1,304,619 | 750,382 | 0% | 0% | 1.7327 | 5″0 |

Flowers exr | 758,083 | 200,512 | 0% | 0% | 1.8101 | 4″7 |

MtTamNorth. exr | 1,422,492 | 487,324 | 0% | 0% | 2.8594 | 4″9 |

Cis front. hdr | 7,893,724 | 640,179 | 0.01% | 0% | 0.3659 | 17″6 |

atrium. hdr | 8,110,240 | 360,418 | 0.36% | 0.11% | 0.0515 | 17″3 |

Parking lot. hdr | 7,767,193 | 666,102 | 0.01% | 0% | 0.3025 | 17″2 |

rooftops. hdr | 7,336,883 | 500,505 | 0% | 0% | 0.1733 | 15″3 |

Albers. hdr | 6,444,172 | 463,477 | 0% | 0% | 0.4152 | 15″7 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tan, Y.; Zhao, Y.
Digital Watermarking Image Compression Method Based on Symmetric Encryption Algorithms. *Symmetry* **2019**, *11*, 1505.
https://doi.org/10.3390/sym11121505

**AMA Style**

Tan Y, Zhao Y.
Digital Watermarking Image Compression Method Based on Symmetric Encryption Algorithms. *Symmetry*. 2019; 11(12):1505.
https://doi.org/10.3390/sym11121505

**Chicago/Turabian Style**

Tan, Yanli, and Yongqiang Zhao.
2019. "Digital Watermarking Image Compression Method Based on Symmetric Encryption Algorithms" *Symmetry* 11, no. 12: 1505.
https://doi.org/10.3390/sym11121505