Some Results on the Symmetric Representation of the Generalized Drazin Inverse in a Banach Algebra
Abstract
:1. Introduction
2. Preliminaries
3. The Symmetric Representation for the Generalized Drazin Inverse of
4. The Representation for the Generalized Drazin Inverse of
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Castro González, N. Additive perturbation results for the Drazin inverse. Linear Algebra Appl. 2005, 397, 279–297. [Google Scholar] [CrossRef] [Green Version]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications; John Wiley & Sons: New York, NY, USA; London, UK; Sydney, Australia, 1974. [Google Scholar]
- Djordjević, D.S.; Rakočević, V. Lectures on Generalized Inverses; Faculty of Sciences and Mathematics, University of Niš: Niš, Serbia, 2008. [Google Scholar]
- Wang, G.R.; Wei, Y.M.; Qiao, S.Z. Generalized Inverses: Theory and Computations, 2nd ed.; Developments in Mathematics; Springer: Singapore; Science Press: Beijing, China, 2018; Volume 53. [Google Scholar]
- Campbell, S.L.; Meyer, C.D. Generalized Inverses of Linear Transformations; Classics in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009; Volume 56. [Google Scholar]
- Bulatova, A.A. Numerical solution of degenerate systems of second-order ordinary differential equations using the Drazin inverse matrix. In Algebrodifferential Systems and Methods for Their Solution (Russian); VO Nauka: Novosibirsk, Russia, 1993; Volume 90, pp. 28–43. [Google Scholar]
- Zhang, X.Y.; Chen, G.L. The computation of Drazin inverse and its application in Markov chains. Appl. Math. Comput. 2006, 183, 292–300. [Google Scholar] [CrossRef]
- Castro-González, N.; Dopazo, E.; Martínez-Serrano, M.F. On the Drazin inverse of the sum of two operators and its application to operator matrices. J. Math. Anal. Appl. 2009, 350, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.Z.; Wang, X.Z.; Wei, Y.M. Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse. Linear Algebra Appl. 2018, 542, 101–117. [Google Scholar] [CrossRef]
- Stanimirović, P.S.; Živković, I.S.; Wei, Y.M. Recurrent neural network for computing the Drazin inverse. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2830–2843. [Google Scholar] [CrossRef] [PubMed]
- Koliha, J.J. A generalized Drazin inverse. Glasg. Math. J. 1996, 38, 367–381. [Google Scholar] [CrossRef]
- Hartwig, R.E.; Wang, G.R.; Wei, Y.M. Some additive results on Drazin inverse. Linear Algebra Appl. 2001, 322, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Djordjević, D.S.; Wei, Y.M. Additive results for the generalized Drazin inverse. J. Aust. Math. Soc. 2002, 73, 115–125. [Google Scholar] [CrossRef]
- Liu, X.J.; Xu, L.; Yu, Y.M. The representations of the Drazin inverse of differences of two matrices. Appl. Math. Comput. 2010, 216, 3652–3661. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X.F. The Drazin inverse of the sum of two matrices and its applications. J. Comput. Appl. Math. 2011, 235, 1412–1417. [Google Scholar] [CrossRef]
- Harte, R.; Mbekhta, M. On generalized inverses in C*-algebras. Stud. Math. 1992, 103, 71–77. [Google Scholar] [CrossRef]
- Djordjević, D.S.; Stanimirović, P.S. On the generalized Drazin inverse and generalized resolvent. Czechoslov. Math. J. 2001, 51, 617–634. [Google Scholar] [CrossRef]
- Cvetković-Ilić, D.S.; Djordjević, D.S.; Wei, Y. Additive results for the generalized Drazin inverse in a Banach algebra. Linear Algebra Appl. 2006, 418, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Benítez, J.; Liu, X.; Qin, Y. Representations for the generalized Drazin inverse in a Banach algebra. Bull. Math. Anal. Appl. 2013, 5, 53–64. [Google Scholar]
- Liu, X.J.; Qin, X.L.; Benítez, J. New additive results for the generalized Drazin inverse in a Banach algebra. Filomat 2016, 30, 2289–2294. [Google Scholar] [CrossRef] [Green Version]
- Mosić, D.; Zou, H.L.; Chen, J.L. The generalized Drazin inverse of the sum in a Banach algebra. Ann. Funct. Anal. 2017, 8, 90–105. [Google Scholar] [CrossRef]
- Castro González, N.; Koliha, J.J. New additive results for the g-Drazin inverse. Proc. R. Soc. Edinb. Sect. A 2004, 134, 1085–1097. [Google Scholar] [CrossRef]
- Mosić, D. A note on Cline’s formula for the generalized Drazin inverse. Linear Multilinear Algebra 2015, 63, 1106–1110. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Liu, X.; Benítez, J. Some Results on the Symmetric Representation of the Generalized Drazin Inverse in a Banach Algebra. Symmetry 2019, 11, 105. https://doi.org/10.3390/sym11010105
Qin Y, Liu X, Benítez J. Some Results on the Symmetric Representation of the Generalized Drazin Inverse in a Banach Algebra. Symmetry. 2019; 11(1):105. https://doi.org/10.3390/sym11010105
Chicago/Turabian StyleQin, Yonghui, Xiaoji Liu, and Julio Benítez. 2019. "Some Results on the Symmetric Representation of the Generalized Drazin Inverse in a Banach Algebra" Symmetry 11, no. 1: 105. https://doi.org/10.3390/sym11010105