

Article

Some Results on the Symmetric Representation of the Generalized Drazin Inverse in a Banach Algebra

Yonghui Qin ¹, Xiaoji Liu ^{2,*} and Julio Benítez ^{3,*}

- College of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China; yonghui1676@163.com
- College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, China
- Department of Applied Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain
- * Correspondence: xiaojiliu72@126.com (X.L.); jbenitez@mat.upv.es (J.B.)

Received: 1 January 2019; Accepted: 13 January 2019; Published: 17 January 2019

Abstract: Based on the conditions $ab^2 = 0$ and $b^{\pi}(ab) \in \mathscr{A}^d$, we derive that $(ab)^n$, $(ba)^n$, and ab + ba are all generalized Drazin invertible in a Banach algebra \mathscr{A} , where $n \in \mathbb{N}$ and a and b are elements of \mathscr{A} . By using these results, some results on the symmetry representations for the generalized Drazin inverse of ab + ba are given. We also consider that additive properties for the generalized Drazin inverse of the sum a + b.

Keywords: generalized Drazin inverse; Banach algebra; representation

MSC: 46H05; 47A05; 15A09

1. Introduction

Let $\mathscr A$ be a complex unital Banach algebra with unit 1. The sets of all invertible elements and quasinilpotent elements of $\mathscr A$ are denoted by $\mathscr A^{-1}$ and $\mathscr A^{\mathrm{qnil}}$, respectively, where $\mathscr A^{-1}:=\{a\in\mathscr A:\exists x\in\mathscr A:ax=xa=1\}$ and $\mathscr A^{\mathrm{qnil}}:=\{a\in\mathscr A:\lim_{n\to+\infty}\|a^n\|^{1/n}=0\}$. Let $a\in\mathscr A$ and, if there is a element $b\in\mathscr A$ such that

$$bab = b$$
, $ab = ba$, and $a(1 - ab)$ is quasinilpotent, (1)

then b is the *generalized Drazin inverse* of a, denoted by a^d , and it is unique. The set of generalized Drazin-invertible elements is denoted by $\mathscr{A}^d = \{a \in \mathscr{A} : \exists a^d\}$. In particular, if a(1 - ab) = 0 (or aba = a), then b is called the *group inverse* of a. Note that aa^d is an idempotent element and let $a^{\pi} = 1 - aa^d$. It was given, in [1] (Lemma 2.4), that a^d exists if and only if there is an idempotent $a \in \mathscr{A}$, such that aa = aa is quasinilpotent, and a + aa is invertible.

The generalized inverse in a matrix or operator theory is very useful in scientific calculation and in various engineering technologies [2–4]. It is well known that the Drazin inverse has been applied in a few fields, such as statistics and probability [5], ordinary differential equations [6], Markov chains [7], operator matrices [8], neural network models [9,10], and the references therein. In [11], a study of the Drazin inverse for bounded linear operators in a Banach space X is given, when 0 is an isolated spectral point of the operator. In [12], some additive results on the Drazin inverse, under the condition ab = 0, are obtained. However, as in [12,13], this condition was not enough to derive a formula for the generalized Drazin inverse for a + b. In [14], authors investigated how to express the Drazin inverse of sums, differences, and products of two matrices P and Q, under the conditions $P^3Q = QP$ and $Q^3P = PQ$. The representations of the Drazin inverse for (P + Q), such that PQP = 0 and $PQ^2 = 0$, is

given in [15]. The generalized inverses in C^* -algebras has been investigated in [16] and a symmetry of the generalized Drazin inverse in a C^* -algebra has been considered in [17].

Some additive properties of the generalized Drazin inverse in a Banach algebra were investigated in [18]. Recently, the expression for the generalized Drazin inverse of the sum a+b on Banach algebra has been studied, such as in the representations of the generalized Drazin inverse for a+b in a Banach algebra, obtained in [19]; some new additive results for the generalized Drazin inverse in a Banach algebra, given in [20]; and additive results on the generalized Drazin inverse of a sum of two elements in a Banach algebra are derived in [21] and the references therein. In this paper, we consider the representations of the generalized Drazin inverse of the sum of two elements in a Banach algebra. By using the assumed conditions $ab^2 = 0$ and $b^{\pi}(ab) \in \mathscr{A}^d$, it is implied that $(ab)^n$, $(ba)^n$, and $ab+ba \in \mathscr{A}^d$, and a symmetry representation for the generalized Drazin inverse of ab+ba is obtained, where $n \in \mathbb{N}$ and $a,b \in \mathscr{A}^d$. We also consider the additive properties for the generalized Drazin inverse of the sum a+b.

In Section 2, some notation is introduced and lemmas are given. In Section 3, a symmetric representation of the generalized Drazin inverse for ab + ba in a Banach algebra is derived. The additive properties of the generalized Drazin inverse of a + b are investigated in Section 4.

2. Preliminaries

Let \mathscr{B} be a subalgebra of the unital algebra \mathscr{A} . For an element $b \in \mathscr{B}^{-1}$, the inverse of b in \mathscr{B} is denoted by $[b^{-1}]_{\mathscr{B}}$. As in [19], it is given that $\mathscr{B}^{-1} \not\subset \mathscr{A}^{-1}$. Let $\mathscr{P} = \{p_1, p_2, \dots, p_n\}$ be a *total system of idempotents* in \mathscr{A} if $p_i^2 = p_i$, for all i, $p_i p_j = 0$ if $i \neq j$, and $p_1 + \dots + p_n = 1$, as in [22]. If $a \in \mathscr{A}^d$, then

$$a = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}}, \qquad a^{\mathsf{d}} = \begin{bmatrix} [a_1^{-1}]_{p \mathscr{A} p} & 0 \\ 0 & 0 \end{bmatrix}_{\mathscr{P}}, \qquad a^{\pi} = \begin{bmatrix} 0 & 0 \\ 0 & 1 - p \end{bmatrix}_{\mathscr{P}}, \tag{2}$$

where $p=aa^d$, $\mathscr{P}=\{p,1-p\}$, $a_1\in[p\mathscr{A}p]^{-1}$, and $a_2\in[(1-p)\mathscr{A}(1-p)]^{\mathsf{qnil}}$. If a has the representation given as in (2), then $a^d=[a_1^{-1}]_{p\mathscr{A}p}=a_1^d$.

The following lemmas are required in what follows.

Lemma 1 ([19]). Let $\mathscr{P} = \{p, 1-p\}$ be a total system of idempotents in \mathscr{A} , and let $a, b \in \mathscr{A}$ have the following representation

$$a = \left[\begin{array}{cc} x & 0 \\ z & y \end{array} \right]_{\mathscr{P}}, \qquad b = \left[\begin{array}{cc} x & t \\ 0 & y \end{array} \right]_{\mathscr{P}}.$$

Then there exist $(z_n)_{n=0}^{\infty} \subset (1-p) \mathscr{A} p$ and $(t_n)_{n=0}^{\infty} \subset p\mathscr{A}(1-p)$, such that

$$a^{n} = \begin{bmatrix} x^{n} & 0 \\ z_{n} & y^{n} \end{bmatrix}_{\mathscr{P}}, \qquad b^{n} = \begin{bmatrix} x^{n} & t_{n} \\ 0 & y^{n} \end{bmatrix}_{\mathscr{P}}, \qquad \forall n \in \mathbb{N}.$$

Lemma 2 ([22]). Let $a, b \in \mathcal{A}$ be generalized Drazin invertible and ab = 0. Then, a + b is generalized Drazin invertible and

$$(a+b)^{d} = b^{\pi} \sum_{n=0}^{\infty} b^{n} (a^{d})^{n+1} + \sum_{n=0}^{\infty} (b^{d})^{n+1} a^{n} a^{\pi}.$$

Lemma 3 ([22]). Let $x, y \in \mathcal{A}$, p be an idempotent of \mathcal{A} , and let x and y have the representation

$$x = \begin{bmatrix} a & 0 \\ c & b \end{bmatrix}_{\{p,1-p\}}, \qquad y = \begin{bmatrix} b & c \\ 0 & a \end{bmatrix}_{\{1-p,p\}}.$$
 (3)

(i) If $a \in [p \mathscr{A} p]^d$ and $b \in [(1-p)\mathscr{A}(1-p)]^d$, then $x, y \in \mathscr{A}^d$ and

$$x^{\mathsf{d}} = \begin{bmatrix} a^{\mathsf{d}} & 0 \\ u & b^{\mathsf{d}} \end{bmatrix}_{\{p,1-p\}}, \qquad y^{\mathsf{d}} = \begin{bmatrix} b^{\mathsf{d}} & u \\ 0 & a^{\mathsf{d}} \end{bmatrix}_{\{1-p,p\}}, \tag{4}$$

where

$$u = \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} c a^n a^{\pi} + \sum_{n=0}^{\infty} b^n b^n c (a^{\mathsf{d}})^{n+2} - b^{\mathsf{d}} c a^{\mathsf{d}}.$$
 (5)

(ii) If $x \in \mathcal{A}^d$ and $a \in [p\mathcal{A}p]^d$, then $b \in [(1-p)\mathcal{A}(1-p)]^d$, and x^d and y^d are given by (4) and (5).

Lemma 4 ([11]). *Let* $a \in \mathcal{A}^{d}$. *Then* $[(a)^{n}]^{d} = [a^{d}]^{n}$, *for all* $n = 1, 2, \cdots$.

Lemma 5 ([11]). If $a, b \in \mathcal{A}^d$ and ab = ba = 0. Then, $(a + b)^d$ also exists and $(a + b)^d = a^d + b^d$.

Lemma 6 ([23]). Let $a, b \in \mathscr{A}^d$. Then $(ab)^{n+1}$ is generalized Drazin invertible, for some $n \in \mathbb{N}$, if and only if ab is generalized Drazin invertible.

Lemma 7 ([23]). Let $a, b \in \mathscr{A}^d$ and $(ab)^{n+1}$ be generalized Drazin invertible for some $n \in \mathbb{N}$. Then, $(ba)^n$ is generalized Drazin invertible and $[(ba)^n]^d = b[(ab)^{n+1}]^d a$.

3. The Symmetric Representation for the Generalized Drazin Inverse of ab+ba

Let $a, b \in \mathcal{A}^d$. A symmetric expression of $(ab + ba)^d$ is given, by using ab, ba, $(ab)^d$, and $(ba)^d$, with the following assumed conditions

$$ab^2 = 0, \ b^{\pi}(ab) \in \mathscr{A}^{\mathsf{d}}. \tag{6}$$

Theorem 1. Let $a, b \in \mathscr{A}^d$ satisfy (6). Then, $(ab)^n$, $(ba)^n$, $ab + ba \in \mathscr{A}^d$ $(n = 1, 2, \cdots)$, and a representation of $(ab + ba)^d$ is given as

$$(ab + ba)^{\mathsf{d}} = (ba)^{\pi} \sum_{n=1}^{\infty} (ba)^{n-1} [(ab)^n]^{\mathsf{d}} + \sum_{n=1}^{\infty} [(ba)^n]^{\mathsf{d}} (ab)^{n-1} (ab)^{\pi}. \tag{7}$$

Proof. Let $b = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}}$, where $\mathscr{P} = \{bb^{\mathsf{d}}, b^{\pi}\}$, b_1 is invertible in the subalgebra $bb^{\mathsf{d}} \mathscr{A} bb^{\mathsf{d}}$, and

 b_2 is quasinilpotent. Let us write $a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}_{\mathscr{P}}$. From $ab^2 = 0$, we have

$$a_{11} = 0$$
, $a_{21} = 0$, $a_{12}b_2^2 = 0$, and $a_{22}b_2^2 = 0$. (8)

Thus, we have $ab = \begin{bmatrix} 0 & a_{12}b_2 \\ 0 & a_{22}b_2 \end{bmatrix}$. By Lemma 3, we obtain that $ab \in \mathscr{A}^d$ if and only if $a_{22}b_2$ is

generalized Drazin invertible. Thus, $(b^{\pi}ab)^{d}$ exists. By using Cline's formula, it proves that $(ab)^{d}$ also is. Therefore, we obtain $(ab)^{n}$, $(ba)^{n} \in \mathscr{A}^{d}$ by using Lemma 6 and 7. Since $ab^{2} = 0$, by Lemma 2 we can prove that ab + ba is generalized Drazin invertible and that (7) holds. If n = 1, then $(ab + ba)^{d} = (ba)^{\pi}(ab)^{d} + (ba)^{d}(ab)^{\pi}$. By using mathematical induction, we derive that the representation can be given, as in (7). \square

Remark 1. *Note that the expression given in Theorem 1 is symmetric.*

Theorem 2. Let $a, b \in \mathscr{A}^{\mathsf{d}}$ satisfy (6) and $a^2 = 0$. Then $ab + ba \in \mathscr{A}^{\mathsf{d}}$ and $[(ab + ba)^{\mathsf{d}}]^n = [(ab)^{\mathsf{d}}]^n + [(ba)^{\mathsf{d}}]^n$, for all $n = 1, 2, \cdots$.

Proof. Let a, b be written as in the proof of Theorem 1, and, by $ab^2 = 0$, we derive $ab = \begin{bmatrix} 0 & a_{12}b_2 \\ 0 & a_{22}b_2 \end{bmatrix}$ and $ab, ba, (ab)^n, (ba)^n \in \mathscr{A}^d$. Since $ab^2 = 0$ and $a^2 = 0$, we have

$$(ab)^{n}(ba)^{n} = (ba)^{n}(ab)^{n} = 0, (ab+ba)^{n} = (ab)^{n} + (ba)^{n},$$
(9)

for all $n = 1, 2, \dots$. By Lemma 4, Lemma 5, and the first equality of (9), we derive

$$[(ab+ba)^{d}]^{n} = [(ab+ba)^{n}]^{d} = [(ab)^{n} + (ba)^{n}]^{d} = [(ab)^{n}]^{d} + [(ba)^{n}]^{d} = [(ab)^{d}]^{n} + [(ba)^{d}]^{n}.$$

At the end of Section 3, let \mathscr{A} be a C^* -algebra, as in [17]. Then, a simple application of the generalized Drazin inverse in a C^* -algebra can be given, as follows.

Theorem 3. Let $a, b \in \mathcal{A}$ be group invertible. If (6) is satisfied, then $(ab + ba)^{\dagger}$ exists.

Proof. By using Theorem 1, we derive that ab + ba is group invertible. As pointed out in [16], ab + ba is generalized invertible. Thus, $(ab + ba)^{\dagger}$ exists. \Box

Theorem 4. Let $a, b \in \mathscr{A}^d$. If (6) is satisfied, then $(ab + ba)^d$ is self-adjoint in a C^* -algebra.

Proof. Note that ab + ba is self-adjoint in a C^* -algebra. By Theorem 1 and using [17] (Theorem 3.2), we obtain that $(ab + ba)^d$ is self-adjoint in a C^* -algebra. \square

4. The Representation for the Generalized Drazin Inverse of a + b

In this section, we consider some results on the expression of $(a + b)^d$, by using a, b, a^d , and b^d , where a, $b \in \mathscr{A}^d$.

Lemma 8. Let $a, b \in \mathcal{A}^d$ satisfy $ab^2 = 0$. Then, $(a + b)^d$ exists if and only if $b^{\pi}(a + b) \in \mathcal{A}^d$.

Proof. Similarly, we rewrite a, b as in the proof of Theorem 1. Since $ab^2 = 0$, we derive

$$a+b = \begin{bmatrix} b_1 & a_{12} \\ 0 & b_2 + a_{22} \end{bmatrix}_{\varnothing}. \tag{10}$$

By Lemma 3, note that $(a+b)^d$ exists if and only if $(a_{22}+b_2)^d$ exists; that is, $(a+b)^d$ exists if and only if $b^{\pi}(a+b)$ is generalized Drazin invertible. \Box

Theorem 5. Let $a, b \in \mathcal{A}^d$ satisfy the conditions of Theorem 2. Then

$$(a+b)^{d} = \sum_{n=0}^{\infty} (b^{d})^{2n+1} \left[b^{d} (ab)^{\pi} (ab)^{n} a + (ab)^{\pi} (ab)^{n} \right]$$
$$- \sum_{n=0}^{\infty} b^{\pi} b^{2n} \left\{ [(ab)^{d}]^{n+1} a + b[(ab)^{d}]^{n+1} \right\}.$$

Proof. By Lemma 8, it also leads to (10). By Lemma 3, we can prove that $(a + b)^d$ exists if and only if $(a_{22} + b_2)^d$ exists; that is, $(a + b)^d$ exists if and only if $b^{\pi}(a + b)$ is generalized Drazin invertible.

If $b^{\pi}ab \in \mathscr{A}^{\mathsf{d}}$, then $(a_{22}b_2)^{\mathsf{d}}$ exists. By Cline's formula, we have that $(b_2a_{22})^{\mathsf{d}}$ exists. As in the proof of Theorem 1, by Lemma 6 and 7, we also obtain that $(ab)^n$, $(ba)^n \in \mathscr{A}^{\mathsf{d}}$, for all $n=1,2,\cdots$.

By $a^2 = 0$, we get

$$a_{12}a_{22} = 0$$
 and $a_{22}^2 = 0$. (11)

By (8) and (11), we have $(b_2a_{22})(a_{22}b_2) = 0$, $(a_{22}b_2)(b_2a_{22}) = 0$. Using Lemma 5, and by Cline's formula, we derive

$$(a_{22}b_2 + b_2a_{22})^{\mathsf{d}} = (a_{22}b_2)^{\mathsf{d}} + (b_2a_{22})^{\mathsf{d}}. \tag{12}$$

By induction, let $[(a_{22}b_2)^d + (b_2a_{22})^d]^n = [(a_{22}b_2)^d]^n + [(b_2a_{22})^d]^n$ for all $n \ge 1$. Therefore, we can prove that

$$[(a_{22}b_2 + b_2a_{22})^{\mathsf{d}}][(a_{22}b_2)^{\mathsf{d}} + (b_2a_{22})^{\mathsf{d}}]^n = [(a_{22}b_2)^{\mathsf{d}}]^{n+1} + [(b_2a_{22})^{\mathsf{d}}]^{n+1}.$$

Since $(a_{22}b_2 + b_2a_{22})b_2^2 = 0$ and b_2 are quasinilpotent, by Lemma 5 and (12), we obtain

$$[(a_{22} + b_2)^2]^{d} = (a_{22}b_2 + b_2a_{22} + b_2^2)^{d}$$

$$= \sum_{n=0}^{\infty} b_2^{2n} [(a_{22}b_2 + b_2a_{22})^{d}]^{n+1}$$

$$= \sum_{n=0}^{\infty} b_2^{2n} [(a_{22}b_2)^{d} + (b_2a_{22})^{d}]^{n+1}.$$
(13)

Then, $b^{\pi}(a+b) \in \mathscr{A}^{\mathsf{d}}$ implies that $(a_{22}+b_2)^{\mathsf{d}}$ exists and $(a_{22}+b_2)^{\mathsf{d}} = [(a_{22}+b_2)^2]^{\mathsf{d}}(a_{22}+b_2)$. Finally, by (13), and $(b_2a_{22})^{\mathsf{d}} = b_2 \left[(a_{22}b_2)^{\mathsf{d}} \right]^2 a_{22}$, we obtain

$$(a_{22} + b_2)^{d} = \left[(a_{22} + b_2)^{d} \right]^{2} (a_{22} + b_2)$$

$$= \sum_{n=0}^{\infty} b_2^{2n} \left\{ \left[(a_{22}b_2)^{d} \right]^{n+1} + \left(b_2 \left[(a_{22}b_2)^{d} \right]^{2} a_{22} \right)^{n+1} \right\} (a_{22} + b_2)$$

$$= \sum_{n=0}^{\infty} b_2^{2n} \left[(a_{22}b_2)^{d} \right]^{n+1} a_{22} + \sum_{n=0}^{\infty} b_2^{2n} \left[b_2 \left((a_{22}b_2)^{d} \right)^{2} a_{22} \right]^{n+1} b_2$$

$$= \sum_{n=0}^{\infty} b_2^{2n} \left\{ \left[(a_{22}b_2)^{d} \right]^{n+1} a_{22} + b_2 \left[(a_{22}b_2)^{d} \right]^{n+1} \right\}$$

$$(14)$$

and

$$(a_{22} + b_2)^{\pi} = (a_{22}b_2)^{\pi} - \sum_{n=0}^{\infty} b_2^{2n+1} \left\{ \left[(a_{22}b_2)^{\mathsf{d}} \right]^{n+1} a_{22} + b_2 \left[(a_{22}b_2)^{\mathsf{d}} \right]^{n+1} \right\}. \tag{15}$$

By Lemma 3, we get that $a + b \in \mathscr{A}^d$ and

$$(a+b)^{d} = \begin{bmatrix} b_1^{-1} & u \\ 0 & (a_{22}+b_2)^{d} \end{bmatrix}_{\mathscr{P}}$$
 (16)

and

$$u = \sum_{n=0}^{\infty} (b_1^{-1})^{n+2} a_{12} (b_2 + a_{22})^n (a_{22} + b_2)^{\pi} - (a_{22} + b_2)^{\mathsf{d}} a_{12} b_1^{-1}. \tag{17}$$

Evidently, we have $\left[b_1^{-1}\right]_{\mathscr{P}}=b^{\mathsf{d}}$ and

$$b^{\mathsf{d}}ba = \left[\begin{array}{cc} b_1^{-1}b_1 & 0 \\ 0 & 0 \end{array} \right]_{\mathscr{P}} \left[\begin{array}{cc} 0 & a_{12} \\ 0 & a_{22} \end{array} \right]_{\mathscr{P}} = \left[\begin{array}{cc} 0 & a_{12} \\ 0 & 0 \end{array} \right]_{\mathscr{P}} = a_{12}.$$

One easily has (by induction and by using (8) and (11)) that, if $n \ge 1$, then

$$a_{12}(a_{22} + b_2)^n = \begin{cases} a_{12}(b_2 a_{22})^{n/2} & \text{if } n \text{ is even,} \\ a_{12}(b_2 a_{22})^{(n-1)/2} b_2 & \text{if } n \text{ is odd.} \end{cases}$$
 (18)

By Lemma 1, we obtain that, for any $n \ge 1$,

$$b^{\pi}(ba)^{n} = \begin{bmatrix} 0 & 0 \\ 0 & b^{\pi} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & x_{n} \\ 0 & (b_{2}a_{22})^{n} \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & 0 \\ 0 & (b_{2}a_{22})^{n} \end{bmatrix}_{\mathscr{P}} = (b_{2}a_{22})^{n},$$

where $(x_n)_{n=0}^{\infty}$ is a sequence in \mathscr{A} . Furthermore, one has $b_2 = b^{\pi}b = bb^{\pi}$ and $ab^{\pi} = a(1-bb^{\mathsf{d}}) = a(1-b^{\mathsf{d}}) = a(1-b^{\mathsf{d}})^2 = a$. Hence, if $n \ge 1$ is even, then

$$a_{12}(a_{22}+b_2)^n = a_{12}(b_2a_{22})^{n/2} = b^{\mathsf{d}}bab^{\pi}(ba)^{n/2} = b^{\mathsf{d}}ba(ba)^{n/2} = b^{\mathsf{d}}(ba)^{(n+2)/2}$$

and if $n \ge 1$ is odd, then

$$a_{12}(a_{22}+b_2)^n = a_{12}(b_2a_{22})^{(n-1)/2}b_2 = b^{\mathsf{d}}bab^{\pi}(ba)^{(n-1)/2}b^{\pi}b = b^{\mathsf{d}}(ba)^{(n+1)/2}b.$$

From (15), we have

$$a_{12}(a_{22} + b_2)^{\pi} = a_{12}(1 - b_2(a_{22}b_2)^{\mathsf{d}}a_{22}),$$

$$a_{22}(a_{22} + b_2)^{\pi} = (a_{22}b_2)^{\pi}a_{22},$$

$$a_{12}b_2(a_{22} + b_2)^{\pi} = a_{12}b_2(a_{22}b_2)^{\pi},$$

$$a_{22}b_2(a_{22} + b_2)^{\pi} = a_{22}b_2(a_{22}b_2)^{\pi}.$$

Thus, by using the obvious equality $(ba)^k b = b(ab)^k$, and by (14)–(16) and (18), we have

$$(a+b)^{\mathsf{d}} = b_{1}^{\mathsf{d}} + u = [b_{1}]_{\mathscr{P}}^{-1} + \sum_{n=0}^{\infty} (\left[b_{1}^{-1}\right]_{\mathscr{P}})^{n+2} a_{12} (b_{2} + a_{22})^{n} (a_{22} + b_{2})^{\pi}$$

$$-(a_{22} + b_{2})^{\mathsf{d}} a_{12} b_{1}^{-1} + (a_{22} + b_{2})^{\mathsf{d}}$$

$$= \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{2n+2} b^{\pi} (ab)^{n} a + \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{2n+1} b^{\pi} (ab)^{n}$$

$$- \sum_{n=0}^{\infty} b^{\pi} b^{2n} \left\{ [(ab)^{\mathsf{d}}]^{n+1} a + b [(ab)^{\mathsf{d}}]^{n+1} \right\}$$

$$= \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{2n+1} \left[b^{\mathsf{d}} (ab)^{\pi} (ab)^{n} a + (ab)^{\pi} (ab)^{n} \right]$$

$$- \sum_{n=0}^{\infty} b^{\pi} b^{2n} \left\{ [(ab)^{\mathsf{d}}]^{n+1} a + b [(ab)^{\mathsf{d}}]^{n+1} \right\}.$$

The proof is completed. \Box

Theorem 6. Let $a, b \in \mathscr{A}^d$ satisfy (6) and $b^{\pi}a^2 = 0$. Then,

$$(a+b)^{\mathsf{d}} = b^{\mathsf{d}} + u + v,$$

where

$$v = -\left\{b^{d}a(ba)^{d} + \sum_{n=0}^{\infty} b^{d}b^{2n+1} \left[((ab)^{d})^{n+1} + ((ba)^{d})^{n+1} \right] \right\},$$

$$u = \sum_{n=0}^{\infty} (b^{d})^{n+2}a(a+b)^{n} + \sum_{n=0}^{\infty} (1-b^{\pi})b^{n}av^{n+2} - b^{d}av.$$

Proof. Let $p = bb^d$ and $\mathcal{P} = \{p, 1-p\}$. Let a and b have the following representation

$$b = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}}, \qquad a = \begin{bmatrix} a_3 & a_1 \\ a_4 & a_2 \end{bmatrix}_{\mathscr{P}}, \tag{19}$$

where b_1 is invertible in $p \mathscr{A} p$ and b_2 is quasinilpotent in $(1-p)\mathscr{A}(1-p)$. Let us find the expression of $b^{\pi}a^2$ in the system of idempotents \mathscr{P} :

$$b^{\pi}a^{2} = \begin{bmatrix} 0 & 0 \\ 0 & 1 - p \end{bmatrix}_{\varnothing} \begin{bmatrix} 0 & a_{1} \\ 0 & a_{2} \end{bmatrix}_{\varnothing} \begin{bmatrix} 0 & a_{1} \\ 0 & a_{2} \end{bmatrix}_{\varnothing} = \begin{bmatrix} 0 & 0 \\ 0 & a_{2}^{2} \end{bmatrix}_{\varnothing} = a_{2}^{2}.$$

Thus, $a_2^2 = 0$. On the other hand,

$$ab^{2} = \begin{bmatrix} 0 & a_{1} \\ 0 & a_{2} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_{1}^{2} & 0 \\ 0 & b_{2}^{2} \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & a_{1}b_{2}^{2} \\ 0 & a_{2}b_{2}^{2} \end{bmatrix}_{\mathscr{P}}.$$

Therefore, $a_2b_2^2=0$. By $b^{\pi}ab$, $b^{\pi}ba\in \mathscr{A}^d$, we obtain (a_2b_2) , $(b_2a_2)\in \mathscr{A}^d$. We can appeal to Theorem 5, obtaining (recall that b_2 is quasinilpotent and $b_2^d=0$) that

$$(a_2 + b_2)^{\mathsf{d}} = -a_2(b_2 a_2)^{\mathsf{d}} - \sum_{n=0}^{\infty} b_2^{2n+1} \left[((a_2 b_2)^{\mathsf{d}})^{n+1} + ((b_2 a_2)^{\mathsf{d}})^{n+1} \right].$$

From Lemma 3 and the representation of a + b in (16), we have

$$(a+b)^{\mathsf{d}} = \left[b_1^{-1}\right]_{\mathscr{P}} + (a_2+b_2)^{\mathsf{d}} + u$$

$$= \left[b_1^{-1}\right]_{\mathscr{P}} + u - \left\{a_2(b_2a_2)^d + \sum_{n=0}^{\infty} b_2^{2n+1} \left[((a_2b_2)^d)^{n+1} + ((b_2a_2)^d)^{n+1} \right] \right\}, \quad (20)$$

where

$$u = \sum_{n=0}^{\infty} (\left[b_1^{-1}\right]_{\mathscr{P}})^{n+2} a_1 (a_2 + b_2)^n (a_2 + b_2)^{\pi}$$

$$+ \sum_{n=0}^{\infty} b_1^{\pi} b_1^n a_1 ((a_2 + b_2)^{\mathsf{d}})^{n+2} - \left[b_1^{-1}\right]_{\mathscr{P}} a_1 (a_2 + b_2)^{\mathsf{d}}$$

$$= \sum_{n=0}^{\infty} (b_1^{\mathsf{d}})^{n+2} a_1 (a_2 + b_2)^n.$$

Observe that $\left[b_1^{-1}\right]_{\mathscr{D}}=b^{\mathsf{d}}$, and

$$(b^{\mathsf{d}})^{n+2}a(a+b)^{n} = \begin{bmatrix} (b_{1}^{\mathsf{d}})^{n+2} & 0 \\ 0 & 0 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_{1} \\ 0 & a_{2} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_{1}^{n} & x_{n} \\ 0 & (a_{2}+b_{2})^{n} \end{bmatrix}_{\mathscr{P}}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & (b_{1}^{\mathsf{d}})^{n+2}a_{1}(a_{2}+b_{2})^{n} \end{bmatrix}_{\mathscr{P}} = (b_{1}^{\mathsf{d}})^{n+2}a_{1}(a_{2}+b_{2})^{n},$$

$$v = b^{\pi}(a+b)^{\mathsf{d}} = (a_{2}+b_{2})^{\mathsf{d}} = -\left\{ b^{\mathsf{d}}a(ba)^{\mathsf{d}} + \sum_{n=0}^{\infty} b^{\mathsf{d}}b^{2n+1} \left[((ab)^{\mathsf{d}})^{n+1} + ((ba)^{\mathsf{d}})^{n+1} \right] \right\}.$$

Thus, the above expression of *u* reduces to

$$u = \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^n + \sum_{n=0}^{\infty} (1-b^{\pi}) b^n a(v)^{n+2} - b^{\mathsf{d}} a v.$$
 (21)

Expressions (20) and (21) finish the proof. \Box

5. Conclusions

In this paper, we have proved that the multiplications $(ab)^n$ and $(ba)^n$ of elements $a,b \in \mathscr{A}^d$ in a Banach algebra are both generalized Drazin invertible with the conditions (6). A symmetry representation of the generalized Drazin inverse for ab+ba has been derived. The expression given in Theorem 1 is symmetric, as in Remark 1. In the other words, if the result is applied in the computation of $(ab+ba)^d$, maybe it will improve the corresponding computational effectiveness and reduce its complexity. The additive properties of $(a+b)^d$ have been investigated under the conditions $ab^2=0$, $b^\pi ab \in \mathscr{A}^d$, and $a^2=0$. With similar conditions, but $a^2=0$ being replaced by $b^\pi a^2=0$, we have also given a resulting expression of $(a+b)^d$.

In fact, as pointed out as in [19], it is still an interesting and open problem to express the generalized Drazin inverse of a + b as a function of a, b, and their respective generalized Drazin inverses. In the future, we plan to consider the representations of the generalized Drazin inverse for $a \pm b$ by using a, b, and their generalized Drazin inverses, without side conditions.

Author Contributions: Funding acquisition, Y.Q. and X.L.; Methodology, X.L.; Supervision, J.B.; Writing-review and editing, Y.Q.

Funding: This work was supported by the National Natural Science Foundation of China (grant number: 11361009, 61772006,11561015), the Special Fund for Science and Technological Bases and Talents of Guangxi (grant number: 2016AD05050, 2018AD19051), the Special Fund for Bagui Scholars of Guangxi (grant number: 2016A17), the High level innovation teams and distinguished scholars in Guangxi Universities (grant number: GUIJIAOREN201642HAO), the Natural Science Foundation of Guangxi(grant number: 2017GXNSFBA198053, 2018JJD110003), and the open fund of Guangxi Key laboratory of hybrid computation and IC design analysis (grant number: HCIC201607).

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

- Castro González, N. Additive perturbation results for the Drazin inverse. *Linear Algebra Appl.* 2005, 397, 279–297. [CrossRef]
- 2. Ben-Israel, A.; Greville, T.N.E. *Generalized Inverses: Theory and Applications*; John Wiley & Sons: New York, NY, USA; London, UK; Sydney, Australia, 1974.
- 3. Djordjević, D.S.; Rakočević, V. *Lectures on Generalized Inverses*; Faculty of Sciences and Mathematics, University of Niš: Niš, Serbia, 2008.
- 4. Wang, G.R.; Wei, Y.M.; Qiao, S.Z. *Generalized Inverses: Theory and Computations*, 2nd ed.; Developments in Mathematics; Springer: Singapore; Science Press: Beijing, China, 2018; Volume 53.

5. Campbell, S.L.; Meyer, C.D. *Generalized Inverses of Linear Transformations*; Classics in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009; Volume 56.

- 6. Bulatova, A.A. Numerical solution of degenerate systems of second-order ordinary differential equations using the Drazin inverse matrix. In *Algebrodifferential Systems and Methods for Their Solution (Russian)*; VO Nauka: Novosibirsk, Russia, 1993; Volume 90, pp. 28–43.
- 7. Zhang, X.Y.; Chen, G.L. The computation of Drazin inverse and its application in Markov chains. *Appl. Math. Comput.* **2006**, *183*, 292–300. [CrossRef]
- 8. Castro-González, N.; Dopazo, E.; Martínez-Serrano, M.F. On the Drazin inverse of the sum of two operators and its application to operator matrices. *J. Math. Anal. Appl.* **2009**, *350*, 207–215. [CrossRef]
- 9. Qiao, S.Z.; Wang, X.Z.; Wei, Y.M. Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse. *Linear Algebra Appl.* **2018**, 542, 101–117. [CrossRef]
- 10. Stanimirović, P.S.; Živković, I.S.; Wei, Y.M. Recurrent neural network for computing the Drazin inverse. *IEEE Trans. Neural Netw. Learn. Syst.* **2015**, *26*, 2830–2843. [CrossRef] [PubMed]
- 11. Koliha, J.J. A generalized Drazin inverse. Glasg. Math. J. 1996, 38, 367–381. [CrossRef]
- 12. Hartwig, R.E.; Wang, G.R.; Wei, Y.M. Some additive results on Drazin inverse. *Linear Algebra Appl.* **2001**, 322, 207–217. [CrossRef]
- 13. Djordjević, D.S.; Wei, Y.M. Additive results for the generalized Drazin inverse. *J. Aust. Math. Soc.* **2002**, 73, 115–125. [CrossRef]
- 14. Liu, X.J.; Xu, L.; Yu, Y.M. The representations of the Drazin inverse of differences of two matrices. *Appl. Math. Comput.* **2010**, *216*, 3652–3661. [CrossRef]
- 15. Yang, H.; Liu, X.F. The Drazin inverse of the sum of two matrices and its applications. *J. Comput. Appl. Math.* **2011**, 235, 1412–1417. [CrossRef]
- 16. Harte, R.; Mbekhta, M. On generalized inverses in C*-algebras. Stud. Math. 1992, 103, 71–77. [CrossRef]
- 17. Djordjević, D.S.; Stanimirović, P.S. On the generalized Drazin inverse and generalized resolvent. *Czechoslov. Math. J.* **2001**, *51*, 617–634. [CrossRef]
- 18. Cvetković-Ilić, D.S.; Djordjević, D.S.; Wei, Y. Additive results for the generalized Drazin inverse in a Banach algebra. *Linear Algebra Appl.* **2006**, *418*, 53–61. [CrossRef]
- 19. Benítez, J.; Liu, X.; Qin, Y. Representations for the generalized Drazin inverse in a Banach algebra. *Bull. Math. Anal. Appl.* **2013**, *5*, 53–64.
- 20. Liu, X.J.; Qin, X.L.; Benítez, J. New additive results for the generalized Drazin inverse in a Banach algebra. *Filomat* **2016**, 30, 2289–2294. [CrossRef]
- 21. Mosić, D.; Zou, H.L.; Chen, J.L. The generalized Drazin inverse of the sum in a Banach algebra. *Ann. Funct. Anal.* **2017**, *8*, 90–105. [CrossRef]
- 22. Castro González, N.; Koliha, J.J. New additive results for the *g*-Drazin inverse. *Proc. R. Soc. Edinb. Sect. A* **2004**, *1*34, 1085–1097. [CrossRef]
- 23. Mosić, D. A note on Cline's formula for the generalized Drazin inverse. *Linear Multilinear Algebra* **2015**, *63*, 1106–1110. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).