# Effective Blind Frequency Offset Estimation Scheme for BST-OFDM Based HDTV Broadcast Systems

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Model

## 3. Conventional Estimation Scheme

## 4. Proposed Estimation Scheme

#### 4.1. Algorithm Description

#### 4.2. MSE Analysis

#### 4.3. Computational Complexity

## 5. Simulation Results and Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- GB20600-2006. Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System. Available online: http://www.gbstandards.org/ (accessed on 16 July 2018).
- Document A/322. ATSC Standard: Physical Layer Protocol. Available online: https://www.atsc.org/ (accessed on 16 July 2018).
- Etsi, E.N. Digital video broadcasting (DVB). Available online: https://www.dvb.org/ (accessed on 16 July 2018).
- ARIB Standard STD-B31 Ver.2.2. Transmission System for Digital Terrestrial Television Broadcasting. Available online: https://www.arib.or.jp/ (accessed on 16 July 2018).
- El-Hajjar, M.; Hanzo, L. A survey of digital television broadcast transmission techniques. IEEE Commun. Surv. Tutor.
**2013**, 15, 1924–1941. [Google Scholar] [CrossRef] - Dai, L.; Wang, Z.; Yang, Z. Next-generation digital television terrestrial broadcasting systems: Key technologies and research trends. IEEE Commun. Mag.
**2012**, 50, 150–158. [Google Scholar] [CrossRef] - Pollet, T.; Van Bladel, M.; Moeneclaey, M. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Trans. Commun.
**1995**, 43, 191–193. [Google Scholar] [CrossRef] - Pollet, T.; Moeneclaey, M. Synchronizability of OFDM signals. In Proceedings of the GLOBECOM’95, Singapore, 14–16 November 1995; pp. 2054–2058. [Google Scholar]
- Speth, M.; Fechtel, S.A.; Fock, G.; Meyr, H. Optimum receiver design for wireless broad-band systems using OFDM-Part I. IEEE Trans. Commun.
**1999**, 47, 1668–1677. [Google Scholar] [CrossRef] - Dantas, C.; Castro, D.; Panazio, C. On enhancing the pilot-aided sampling clock offset estimation of mobile OFDM systems. J. Commun. Inf. Syst.
**2016**, 31, 108–117. [Google Scholar] [CrossRef] - Liu, W.; Bian, X.; Deng, Z.; Mo, J.; Jia, B. A novel carrier loop algorithm based on maximum likelihood estimation (MLE) and Kalman filter (KF) for weak TC-OFDM signals. Sensors
**2018**, 18, 2256. [Google Scholar] [CrossRef] [PubMed] - Yuan, J.; Torlak, M. Joint CFO and SFO estimator for OFDM receiver using common reference frequency. IEEE Trans. Broadcast.
**2016**, 62, 141–149. [Google Scholar] [CrossRef] - Kim, Y.H.; Lee, J.H. Joint maximum likelihood estimation of carrier and sampling frequency offsets for OFDM systems. IEEE Trans. Broadcast.
**2013**, 57, 277–283. [Google Scholar] - Jose, R.; Hari, K.V.S. Maximum likelihood algorithms for joint estimation of synchronisation impairments and channel in multiple input multiple output orthogonal frequency division multiplexing system. IET Commun.
**2013**, 7, 1567–1579. [Google Scholar] [CrossRef] - Speth, M.; Fechtel, S.A.; Fock, G.; Meyr, H. Optimum receiver design for OFDM-based broadband transmission-Part II: a case study. IEEE Trans. Commun.
**2001**, 49, 571–578. [Google Scholar] [CrossRef] - Shi, K.; Serpedin, E.; Ciblat, P. Decision-directed fine synchronization in OFDM systems. IEEE Trans. Commun.
**2005**, 53, 408–412. [Google Scholar] [CrossRef] - Liu, S.; Chong, J.A. Study of joint tracking algorithms of carrier frequency offset and sampling clock offset for OFDM-based WLANs. In Proceedings of the IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, Chengdu, China, 29 June–1 July 2002; pp. 109–113. [Google Scholar]
- Tsai, P.Y.; Kang, H.Y.; Chiueh, T.D. Joint weighted least-squares estimation of carrier-frequency offset and timing offset for OFDM systems over multipath fading channels. IEEE Trans. Veh. Technol.
**2005**, 54, 211–223. [Google Scholar] [CrossRef] - Chiang, P.H.; Lin, D.B.; Li, H.J.; Stuber, G.L. Joint estimation of carrier-frequency and sampling-frequency offsets for SC-FDE systems on multipath fading channels. IEEE Trans. Commun.
**2008**, 56, 1231–1235. [Google Scholar] [CrossRef] - Morelli, M.; Moretti, M. Fine carrier and sampling frequency synchronization in OFDM systems. IEEE Trans. Wirel. Commun.
**2010**, 9, 1514–1524. [Google Scholar] [CrossRef] - Wang, X.; Hu, B. A low-complexity ML estimator for carrier and sampling frequency offsets in OFDM systems. IEEE Commun. Lett.
**2014**, 18, 503–506. [Google Scholar] [CrossRef] - Jose, R.; Ambat, S.K.; Hari, K.V.S. Low complexity joint estimation of synchronization impairments in sparse channel for MIMO-OFDM system. Int. J. Electron. Commun.
**2014**, 68, 151–157. [Google Scholar] [CrossRef] - Murin, Y.; Dabora, R. Low complexity estimation of carrier and sampling frequency offsets in burst-mode OFDM systems. Wirel. Commun. Mob. Comput.
**2016**, 16, 1018–1034. [Google Scholar] [CrossRef] - Chiueh, T.D.; Tsai, P.Y.; Lai, I.W. Baseband Receiver Design for Wireless MIMO-OFDM Communications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Nasir, A.A.; Durrani, S.; Mehrpouyan, H.; Blostein, S.D.; Kennedy, R.A. Timing and carrier synchronization in wireless communication systems: a survey and classification of research in the last 5 years. Eur. J. Wirel. Commun. Netw.
**2016**, 2016, 1–38. [Google Scholar] [CrossRef] - Golub, G.H.; Van Loan, C.F. Matrix Computations; The Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Failli, M. Digital Land Mobile Radio Communications-COST 207; Final Report; Commission of the European Community: Brussels, Belgium, 1989. [Google Scholar]

**Figure 1.**ISDB-T segment and program allocations [4].

**Figure 2.**MSE of the proposed LS estimator versus ${N}_{a}$ in the ISDB-T 2k mode: (1) ${\Delta}_{c}=0.01$ and ${\Delta}_{s}=10$ ppm (2) ${\Delta}_{c}=0.02$ and ${\Delta}_{s}=20$ ppm.

**Figure 3.**MSE of the proposed LS estimator versus ${N}_{a}$ in the ISDB-T 4k mode: (1) ${\Delta}_{c}=0.01$ and ${\Delta}_{s}=10$ ppm (2) ${\Delta}_{c}=0.02$ and ${\Delta}_{s}=20$ ppm.

**Figure 4.**MSE of the proposed LS estimator versus ${N}_{a}$ in the ISDB-T 8k mode: (1) ${\Delta}_{c}=0.01$ and ${\Delta}_{s}=10$ ppm (2) ${\Delta}_{c}=0.02$ and ${\Delta}_{s}=20$ ppm.

**Figure 5.**MSE of the conventional and proposed LS estimators when (1) ICI is present and (2) no ICI is present.

**Figure 6.**MSE of the proposed LS estimator versus ${N}_{a}$ when ${\Delta}_{c}$ = 0.01: (

**a**) CFO estimator; (

**b**) SFO estimator.

**Table 1.**Transmission parameters for ISDB-T [4].

Parameters | Mode 1 | Mode 2 | Mode 3 |
---|---|---|---|

FFT size | 2k | 4k | 8k |

Bandwidth | 5.575 MHz | 5.573 MHz | 5.572 MHz |

Subcarrier spacing | 3.968 kHz | 1.984 kHz | 0.992 kHz |

Effective symbol duration | 252 $\mathsf{\mu}$s | 504 $\mathsf{\mu}$s | 1008 $\mathsf{\mu}$s |

Number of segments | 13 | 13 | 13 |

Number of carriers per segments | 108 | 216 | 432 |

Number of usable carriers | 1405 | 2809 | 5617 |

Number of SP carriers | $9\times {N}_{c}$ | $18\times {N}_{c}$ | $36\times {N}_{c}$ |

Number of CP carriers | ${N}_{d}+1$ | ${N}_{d}+1$ | ${N}_{d}+1$ |

Number of TMCC carriers | ${N}_{c}+5\times {N}_{d}$ | $2\times {N}_{c}+10\times {N}_{d}$ | $4\times {N}_{c}+20\times {N}_{d}$ |

Number of AC1 carriers | 26 | 52 | 104 |

Number of AC2 carriers | $4\times {N}_{d}$ | $9\times {N}_{d}$ | $19\times {N}_{d}$ |

Algorithm | Complex Multiplication | Real Multiplication | Real Addition |
---|---|---|---|

Conventional | ${N}_{a}{N}_{f}$ | $4{N}_{a}{N}_{f}+{N}_{f}+2$ | $2({N}_{f}-1)$ |

Proposed | ${N}_{a}(2{N}_{p}-1)$ | ${N}_{p}+1$ | $2({N}_{p}-1)$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jung, Y.-A.; You, Y.-H.
Effective Blind Frequency Offset Estimation Scheme for BST-OFDM Based HDTV Broadcast Systems. *Symmetry* **2018**, *10*, 379.
https://doi.org/10.3390/sym10090379

**AMA Style**

Jung Y-A, You Y-H.
Effective Blind Frequency Offset Estimation Scheme for BST-OFDM Based HDTV Broadcast Systems. *Symmetry*. 2018; 10(9):379.
https://doi.org/10.3390/sym10090379

**Chicago/Turabian Style**

Jung, Yong-An, and Young-Hwan You.
2018. "Effective Blind Frequency Offset Estimation Scheme for BST-OFDM Based HDTV Broadcast Systems" *Symmetry* 10, no. 9: 379.
https://doi.org/10.3390/sym10090379