Abstract
Understanding the distribution of water and salt in the crop’s root zone and predicting future soil degradation requires specific monitoring to establish guidelines for irrigation management and system performance. Two field experiments were conducted in the arid region of Southern Tunisia to assess soil water and salt dynamics under surface- and drip-irrigated carrots using HYDRUS 2D/3D simulations in the 2017–2018 and 2018–2019 crop seasons. The soil water contents and bulk soil electrical conductivities were measured at three distinct soil layers: 0–20 cm, 20–40 cm, and 40–60 cm, where TDR probes were located. Statistical indicators (nRMSE, IA, and PBIAS) suggest that HYDRUS 2D/3D is reliable in simulating field hydro-saline dynamics for irrigated carrots. The results obtained for the two crop seasons exhibit a strong correlation between the simulated and measured values for both soil water contents and electrical conductivities. The study also shows that HYDRUS 2D/3D allows more accurate simulations of soil water dynamics than soil salinity under these conditions. Overall, these results provide valuable insights for understanding the hydrological processes in arid regions and can help in improving the management of water resources in these areas.