Spatiotemporal Evolution and Scenario-Based Simulation of Habitat Quality in a Coastal Mountainous City: A Case Study of Busan, South Korea
Abstract
1. Introduction
- (1)
- To simulate land-use patterns in Busan from 2029 to 2049 under various SSP scenarios using the PLUS model combined with projected climate and socio-economic data;
- (2)
- To assess the temporal and spatial evolution of habitat quality in both historical and future periods based on land-use patterns using the InVEST model;
- (3)
- To determine and measure the key drivers of habitat quality’s spatial heterogeneity through the GeoDetector model;
- (4)
- To apply multiple significance testing methods to assess the reliability of the results and enhance the robustness of the models;
- (5)
- To provide theoretical and data-based support for ecological conservation, land-use planning, and sustainable development in Busan and other coastal mountainous cities facing land resource constraints.
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.2.1. Land-Use Data
2.2.2. Driving Factors
2.3. Methodology
2.3.1. PLUS Model
2.3.2. InVEST Model
2.3.3. Scenario Setting
2.3.4. GeoDetector
3. Results
3.1. Land-Use Change Analysis
3.1.1. Land-Use Dynamics Between 1988 and 2019
3.1.2. Simulated Land-Use Change from 2029 to 2049 Under Multiple Scenarios
3.2. Habitat Quality Change Analysis
3.2.1. Habitat Quality Change Between 1988 and 2019
3.2.2. Simulated Habitat Quality Change Between 2029 and 2049
3.2.3. Spatial Analysis of Habitat Quality Change Areas
3.3. Analysis of Driving Factors of Spatial Heterogeneity in Habitat Quality
3.4. Model Accuracy Assessment
3.4.1. Collinearity Diagnostics of Driving Factors
3.4.2. Contribution of the Driving Factors for Land-Use Change
3.4.3. Accuracy Assessment of Habitat Quality
3.4.4. Optimal-Parameter Geodetector
4. Discussion
4.1. Relationship Between Habitat Quality and Land-Use Change
4.2. Scenario-Based Strategic Choices for Busan
4.3. Mechanisms Driving Spatial Heterogeneity in Habitat Quality
4.4. Limitations and Future Perspectives
4.5. Implications for Coastal Mountainous Cities
4.6. Policy Recommendations
- (1)
- Prioritizing internal urban development. In the central urban area, efforts should focus on improving the efficiency of existing land use and avoiding unplanned expansion. The construction of parks and green spaces should be strengthened, serving as key nodes connecting high habitat quality areas, with three ecological corridors established across Busan: the Central Ecological Corridor (Geumjeongsan–Suyeong River–East Coast), the Eastern Ecological Corridor (extending from high-quality habitat areas in the east to the Haeundae coastline), and the Western Ecological Corridor (Geumjeongsan–Baegyangsan–Gudeoksan–southern coastline). These corridors should consolidate and reconnect fragmented green spaces, mitigating landscape fragmentation caused by urban expansion and enhancing ecosystem stability. In Busan Ecocity, located in the Nakdong River Delta adjacent to a wetland protection area, stricter waste discharge regulations should be enforced to prevent water pollution and protect the estuarine wetland ecosystem. For agricultural land in Gangseo District, a farmland protection demonstration zone should be established, strictly prohibiting non-agricultural development.
- (2)
- Strengthening the ecological barrier function of ecological land. As an important habitat for migratory birds, the coastal zone and the Nakdong River wetlands should be managed based on the Natural Grade Map and the Basic Wetland Conservation Plan, implementing zoned and classified management. The Nakdong River estuary should be subject to strict control, while coastal areas—given their tourism functions—should be managed in a scientifically adaptive manner. Forests, as the dominant land type in the study area, should be managed by region. In high-altitude areas, stricter conservation policies should be implemented, and technologies such as remote sensing and unmanned aerial vehicles should be used to collect real-time data from core forest zones. On this basis, green recreation, environmental education, and ecological learning activities may be appropriately developed to enhance the cultural services of forests and reinforce their role in sustainable urban development. Additionally, the management of forests in urban fringe areas should be strengthened to serve as a buffer zone between urban land and forest ecosystems.
- (3)
- Improve the urban ecological supervision system. Given the high consistency between habitat quality results and official datasets, it is recommended that government agencies integrate the habitat quality index, the National Land Environmental Evaluation Map, and the Natural Grade Map into a comprehensive urban development evaluation framework. In areas with both high spatial overlap and high habitat quality, a dynamic ecological protection monitoring system and rapid response mechanism based on remote sensing and geographic information system technologies should be established to ensure precise, real-time monitoring and effective ecosystem management. Conversely, in areas with relatively low habitat quality and evaluation scores, differentiated ecological enhancement strategies should be formulated, considering development pressures, ecological functions, and spatial positioning. This approach would enable a more rational and stable improvement in the overall ecological environmental quality of the city.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, H.; Liu, Y.; Wu, X.; Dong, G. Spatio-temporal dynamic patterns of farmland and rural settlements in Su–Xi–Chang region: Implications for building a new countryside in coastal China. Land Use Policy 2009, 26, 322–333. [Google Scholar] [CrossRef]
- Lee, H.K.; Kim, H.Y. Economic growth for ecological conversions: South Korean case. Environ. Sci. Eur. 2018, 30, 21. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Rowhani, P.; Scharlemann, J.P.W. Impacts of past abrupt land change on local biodiversity globally. Nat. Commun. 2019, 10, 5474. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, J.; Hu, Y.; Lv, S. Change of Landscape Patterns in the Huihe National Nature Reserve, Hulun Buir, Inner Mongolia, Northern China. In Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; IEEE: Piscataway, NJ, USA, 2009; Volume 2, pp. 306–311. [Google Scholar] [CrossRef]
- Wang, H.; Lü, Z.; Gu, L.; Wen, C. Observations of China’s forest change (2000–2013) based on Global Forest Watch dataset. Biodivers. Sci. 2015, 23, 575. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Q.; He, C. Scenarios simulation of the spatial stress on wetlands by urban expansion: A case study of Huailai county. J. Nat. Resour. 2017, 32, 1469–1481. [Google Scholar] [CrossRef]
- Powers, R.P.; Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 2019, 9, 323–329. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef] [PubMed]
- Schirpke, U.; Tasser, E.; Borsky, S.; Braun, M.; Eitzinger, J.; Gaube, V.; Getzner, M.; Glatzel, S.; Gschwantner, T.; Kirchner, M.; et al. Past and future impacts of land-use changes on ecosystem services in Austria. J. Environ. Manag. 2023, 345, 118728. [Google Scholar] [CrossRef]
- Lee, E.; Sagong, J.; Lee, Y. Influence of land use change on the waterbird community of Sihwa Lake, Republic of Korea. Avian Res. 2020, 11, 36. [Google Scholar] [CrossRef]
- Yu, W.; Luo, X.; Tang, L.; Huang, Y. Impact of grain growing objectives on the application of bio-pesticides of rice farmers from the perspective of land fragmentation. Resour. Sci. 2019, 41, 2193–2204. [Google Scholar] [CrossRef]
- United Nations. Transforming our world: The 2030 Agenda for Sustainable Development; Assembly U N G. Transforming our world: The 2030 Agenda for Sustainable Development, A/RES/70/1; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org (accessed on 21 October 2015).
- Long, H. Analysis of the key factors of ecological environment protection in the national economic sustainable development goals. J. Environ. Public Health 2022, 2022, 3593587. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Sheng, X.; Wei, G. Does environmental protection promote economic development? From the perspective of coupling coordination between environmental protection and economic development. Environ. Sci. Pollut. Res. 2020, 27, 39135–39148. [Google Scholar] [CrossRef]
- Ntshane, B.C.; Gambiza, J. Habitat assessment for ecosystem services in South Africa. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 242–254. [Google Scholar] [CrossRef]
- Rahimi, L.; Malekmohammadi, B.; Yavari, A.R. Assessing and modeling the impacts of wetland land cover changes on water provision and habitat quality ecosystem services. Nat. Resour. Res. 2020, 29, 3701–3718. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Zhou, G. Impact of land use change on habitat quality and regional biodiversity capacity: Temporal and spatial evolution and prediction analysis. Front. Environ. Sci. 2022, 10, 1041573. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. Evaluation for the spatiotemporal patterns of ecological vulnerability and habitat quality: Implications for supporting habitat conservation and healthy sustainable development. Environ. Geochem. Health 2023, 45, 2117–2147. [Google Scholar] [CrossRef]
- Hong, H.J.; Kim, C.K.; Lee, H.W.; Lee, W.K. Conservation, restoration, and sustainable use of biodiversity based on habitat quality monitoring: A case study on Jeju Island, South Korea (1989–2019). Land 2021, 10, 774. [Google Scholar] [CrossRef]
- Gao, H.; Song, X.; Xu, H.; Li, X.; Tang, J.; Zhao, G. Promoting sustainable development by mitigation of natural habitat quality decline through multifunctional urban land use: Insights from a multi-scenario simulation. Sustain. Cities Soc. 2024, 110, 105563. [Google Scholar] [CrossRef]
- Lin, Y.; An, W.; Gan, M.; Shahtahmassebi, A.; Ye, Z.; Huang, L.; Zhu, C.; Huang, L.; Zhang, J.; Wang, K. Spatial grain effects of urban green space cover maps on assessing habitat fragmentation and connectivity. Land 2021, 10, 1065. [Google Scholar] [CrossRef]
- Yin, J.; Fu, P.; Cheshmehzangi, A.; Li, Z.; Dong, J. Investigating the changes in urban green-space patterns with urban land-use changes: A case study in Hangzhou, China. Remote Sens. 2022, 14, 5410. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Brewer, T. Impact of rapid urban expansion on green space structure. Ecol. Indic. 2017, 81, 274–284. [Google Scholar] [CrossRef]
- Zajac, Z.; Stith, B.; Bowling, A.C.; Langtimm, C.A.; Swain, E.D. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: A case study for submerged aquatic vegetation. Ecol. Evol. 2015, 5, 2503–2517. [Google Scholar] [CrossRef]
- Duan, H.; Xu, N. Assessing social values for ecosystem services in rural areas based on the SolVES model: A case study from Nanjing, China. Forests 2022, 13, 1877. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J. Evaluation on effect of land consolidation on habitat quality based on InVEST model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 250–255. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Qin, X.; Yang, Q.; Wang, L. The evolution of habitat quality and its response to land use change in the coastal China, 1985–2020. Sci. Total Environ. 2024, 952, 175930. [Google Scholar] [CrossRef]
- Tian, C.; Zhong, J.; You, Q.; Fang, C.; Hu, Q.; Liang, J.; He, J.; Yang, W. Land use modeling and habitat quality assessment under climate scenarios: A case study of the Poyang Lake basin. Ecol. Indic. 2025, 172, 113292. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Yan, H.; Liang, Y.; Guo, X.; Ye, J. Trade-off among grain production, animal husbandry production, and habitat quality based on future scenario simulations in Xilinhot. Sci. Total Environ. 2022, 817, 153015. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Gou, A. Research on the evolution characteristics, driving mechanisms and multi-scenario simulation of habitat quality in the Guangdong-Hong Kong-Macao Greater Bay based on multi-model coupling. Sci. Total Environ. 2024, 924, 171263. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Teng, Y.; Li, J.; Yan, Y.; Zhao, C.; Li, Y.; Li, X. A new assessment framework to forecast land use and carbon storage under different SSP-RCP scenarios in China. Sci. Total Environ. 2024, 912, 169088. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.; Huang, G.; Zheng, G. Spatiotemporal evolution and prediction of habitat quality in Hohhot City of China based on the InVEST and CA-Markov models. J. Arid. Land 2023, 15, 20–33. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, C.; Yang, H. Spatio-temporal evolution and prediction of carbon storage in Guilin based on FLUS and InVEST models. Remote Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Luo, J.; Fu, H. Constructing an urban cooling network based on PLUS model: Implications for future urban planning. Ecol. Indic. 2023, 154, 110887. [Google Scholar] [CrossRef]
- Jiang, H.; Cui, Z.; Fan, T.; Yin, H. Impacts of land use change on carbon storage in the Guangxi Beibu Gulf Economic Zone based on the PLUS-InVEST model. Sci. Rep. 2025, 15, 6468. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Li, G.; Chen, C.; Li, M.; Luo, J. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010. J. Geogr. Sci. 2020, 30, 601–620. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, L.; Xu, Z.; Zhang, J.; Chi, M.; Lan, S.; Gan, Q. Interactive effects on habitat quality using InVEST and GeoDetector models in Wenzhou, China. Land 2022, 11, 630. [Google Scholar] [CrossRef]
- Kim, J.H. A Study on the Selection of Priority Conservation Areas Based on Ecosystem Functions in Busan-Evaluation of Habitat Quality and Ecological Connectivity. J. Korean Soc. Environ. Restor. Technol. 2024, 27, 15–25. [Google Scholar] [CrossRef]
- Choi, J.; Lee, Y.; Lee, S. A study on the ecosystem services value assessment according to city development: In case of the busan eco-delta city development. J. Environ. Impact Assess. 2019, 28, 427–439. [Google Scholar] [CrossRef]
- Kwon, H.Y.; Jang, J.E.; Shin, H.S.; Yu, B.H.; Lee, S.C.; Choi, S.H. Habitat Quality Analysis and an Evaluation of Gajisan Provincial Park Ecosystem Service Using InVEST Model. Korean J. Environ. Ecol. 2022, 36, 318–326. [Google Scholar] [CrossRef]
- Kim, T.; Song, C.; Lee, W.K.; Kim, M.; Lim, C.H.; Jeon, S.W.; Kim, J. Habitat quality valuation using InVEST model in Jeju Island. J. Korean Soc. Environ. Restor. Technol. 2015, 18, 1–11. [Google Scholar] [CrossRef]
- Shin, H.S.; Jang, J.E.; Kwon, H.Y.; Kim, G.R.; Jang, J.; Choi, S.H. Establishing habitat quality criteria for the ecosystem services InVEST model using AHP techniques. Korean J. Environ. Ecol. 2024, 38, 67–78. [Google Scholar] [CrossRef]
- Jang, J.E.; Kwon, H.Y.; Shin, H.; Lee, S.C.; Yu, B.H.; Jang, J.; Choi, S.H. Habitat Quality Analysis and Evaluation of InVEST Model Using QGIS-Conducted in 21 National Parks of Korea. Korean J. Environ. Ecol. 2022, 36, 102–111. [Google Scholar] [CrossRef]
- Sun, L.; Yu, H.; Sun, M.; Wang, Y. Coupled impacts of climate and land use changes on regional ecosystem services. J. Environ. Manag. 2023, 326, 116753. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, L.; Wang, T.; Ruan, Z.; Du, P. Spatial–temporal evolution analysis of multi-scenario land use and carbon storage based on PLUS-InVEST model: A case study in Dalian, China. Ecol. Indic. 2024, 166, 112448. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, C.; Su, Y.; Duan, H.; Wu, X.; Lu, R.; Su, Q.; Wu, Y.; Chu, Z. Study on spatiotemporal evolution and driving forces of habitat quality in the basin along the Yangtze River in Anhui Province based on InVEST model. Land 2023, 12, 1092. [Google Scholar] [CrossRef]
- Gao, J. Downscaling Global Spatial Population Projections from 1/8-Degree to 1-km Grid Cells; NCAR Technical Note NCAR/TN-537+STR; National Center for Atmospheric Researcher: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Wang, T.; Sun, F. Global gridded GDP data set consistent with the shared socioeconomic pathways. Sci. Data 2022, 9, 221. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Chen, J.; Arash, M.; Zhang, B.; Chang, Q.; Liu, J.; You, W. Assessing the impact of land use change on habitat quality in Zhongwei through multiscenario simulation using the PLUS and InVEST models. Sci. Rep. 2025, 15, 12355. [Google Scholar] [CrossRef]
- Deng, G.; Jiang, H.; Ma, S.; He, C.; Sheng, L.; Wen, Y. Revealing the impacts of different urban development on habitat quality: A case study of the Changchun–Jilin region of China. J. Clean. Prod. 2025, 511, 145661. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Liu, B.B.; Chu, J.; Peng, L. Research progress and application of InVEST model. Chin. J. Trop. Agri. 2013, 33, 58–62. [Google Scholar]
- Wang, B.; Cheng, W. Effects of land use/cover on regional habitat quality under different geomorphic types based on InVEST model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Natural Capital Project, 2025. InVEST 3.16.2 User’s Guide. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences. Available online: https://naturalcapitalproject.stanford.edu/software/invest/invest-downloads-data (accessed on 1 July 2025).
- Wang, J.F.; Zhang, T.L.; Fu, B.J.A. measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, K.; Cao, L.; Guan, X.; Zhang, H. Driving forces and prediction of urban land use change based on the geodetector and CA-Markov model: A case study of Zhengzhou, China. Int. J. Digit. Earth 2022, 15, 2246–2267. [Google Scholar] [CrossRef]
- Wang, H.; Qin, F.; Xu, C.; Li, B.; Guo, L.; Wang, Z. Evaluating the suitability of urban development land with a Geodetector. Ecol. Indic. 2021, 123, 107339. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Z.; Zhao, F.; Guo, X.; Zhao, J.; Xu, Y.; Liu, X. Assessment of eco-environmental quality changes and spatial heterogeneity in the Yellow River Delta based on the remote sensing ecological index and geo-detector model. Ecol. Inform. 2023, 77, 102203. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, S.; Li, Y.; Wu, H.; Wu, R. Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model, China. Ecol. Indic. 2024, 158, 111529. [Google Scholar] [CrossRef]
- Ma, S.; Deng, G.; Wang, L.J.; Hu, H.; Fang, X.; Jiang, J. Telecoupling between urban expansion and forest ecosystem service loss through cultivated land displacement: A case study of Zhejiang Province, China. J. Environ. Manag. 2024, 357, 120695. [Google Scholar] [CrossRef]
- Sarkar, L.; Chakraborty, P. Analysing urban sprawl as a response to land use & land cover change dynamics using geospatial techniques: A study of Kolkata and surrounding area. Geo J. 2025, 90, 168. [Google Scholar]
- Amaral, S.; Metzger, J.P.; Rosa, M.; Adorno, B.V.; Gonçalves, G.C.; Pinto, L.F.G. Alarming patterns of mature forest loss in the Brazilian Atlantic Forest. Nat. Sustain. 2025, 8, 256–264. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, J. Urban expansion and ecosystem service dynamics: A Suncheon city case study. Environ. Dev. Sustain. 2025, 1–19. [Google Scholar] [CrossRef]
- Kim, J.H.; Kwon, O.S.; Ra, J.H. Urban type classification and characteristic analysis through time-series environmental changes for land use management for 31 satellite cities around Seoul, South Korea. Land 2021, 10, 799. [Google Scholar] [CrossRef]
- Jeong, S.; Sung, K. Assessing Habitat Quality and Risk of Coastal Areasin Busan. J. Environ. Impact Assess. 2022, 31, 95–105. [Google Scholar] [CrossRef]
- Hallaj, Z.; Bijani, M.; Karamidehkordi, E.; Yousefpour, R.; Yousefzadeh, H. Forest land use change effects on biodiversity ecosystem services and human well-being: A systematic analysis. Environ. Sustain. Indic. 2024, 23, 100445. [Google Scholar] [CrossRef]
- Luo, P.; Wang, X.; Zhang, L.; Zainol, M.R.R.M.A.; Duan, W.; Hu, M.; Guo, B.; Zhang, Y.; Wang, Y.; Nover, D. Future land use and flood risk assessment in the Guanzhong Plain, China: Scenario analysis and the impact of climate change. Remote Sens. 2023, 15, 5778. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, H.; Duan, D.; Zhou, X.; Chen, J.; Sun, Z.; Zhang, X. Stability in change: Building a stable ecological security pattern in Northeast China under climate and land use changes. Sci. Rep. 2024, 14, 12642. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, X.; Yang, Y.; Xue, M. Optimization and simulation of mountain city land use based on MOP-PLUS model: A case study of Caijia Cluster, Chongqing. ISPRS Int. J. Geo-Inf. 2023, 12, 451. [Google Scholar] [CrossRef]
- Park, M.; Lee, J.; Won, J. Navigating Urban Sustainability: Urban Planning and the Predictive Analysis of Busan’s Green Area Dynamics Using the CA-ANN Model. Forests 2024, 15, 1681. [Google Scholar] [CrossRef]
- Fu, X.; Xue, F.; Liu, Y.; Chen, F.; Yang, H. Evaluation of Urban Flood Susceptibility Under the Influence of Urbanization Based on Shared Socioeconomic Pathways. Land 2025, 14, 621. [Google Scholar] [CrossRef]
- Tang, W.; Cui, L.; Zheng, S.; Hu, W. Multi-scenario simulation of land use carbon emissions from energy consumption in Shenzhen, China. Land 2022, 11, 1673. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q.; Zhang, D.; Shi, P.; Lu, W. Impacts of global urban expansion on natural habitats undermine the 2050 vision for biodiversity. Resour. Conserv. Recycl. 2023, 190, 106834. [Google Scholar] [CrossRef]
- Cabernard, L.; Pfister, S.; Hellweg, S. Biodiversity impacts of recent land-use change driven by increases in agri-food imports. Nat. Sustain. 2024, 7, 1512–1524. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, P.; Liu, Y. Spatiotemporal evolution effects of habitat quality with the conservation policies in the Upper Yangtze River, China. Sci. Rep. 2025, 15, 5972. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X. Spatio-temporal variations of habitat quality and its driving factors in the Yangtze River Delta region of China. Glob. Ecol. Conserv. 2024, 52, e02978. [Google Scholar] [CrossRef]
- Bennett, V.J. Effects of road density and pattern on the conservation of species and biodiversity. Curr. Landsc. Ecol. Rep. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Lamb, C.T.; Mowat, G.; Reid, A.; Smit, L.; Proctor, M.; McLellan, B.N.; Nielsen, S.E.; Boutin, S.; Marnewick, K. Effects of habitat quality and access management on the density of a recovering grizzly bear population. J. Appl. Ecol. 2018, 55, 1406–1417. [Google Scholar] [CrossRef]
- Xin, P.Y.; Tian, T.; Zhang, M.L.; Han, W.Z.; Song, Y.T. Assessment of habitat quality changes and driving factors in Jilin Province based on InVEST model and geodetector. J. Appl. Ecol. 2024, 35, 2853–2860. [Google Scholar] [CrossRef]
- Hui, C.; Liu, X.; Zhang, M.; Zhang, X.; Liu, X. Effects of the Loess Plateau on Habitat Quality of the West Qinling Mountains, China. Ecol. Evol. 2025, 15, e71289. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, J.; Gong, H.; Ye, M.; Feng, B.; He, G.; Huang, R. Evaluation of gains and losses in coastal ecosystem service value under the influence of reclamation: A case study of Hangzhou Bay New Area, Ningbo. Econ. Geogr. 2017, 37, 181–190. [Google Scholar] [CrossRef]
- Fan, H.; Xu, J.; Gao, S. Modeling the dynamics of urban and ecological binary space for regional coordination: A case of Fuzhou coastal areas in Southeast China. Habitat Int. 2018, 72, 48–56. [Google Scholar] [CrossRef]
Threat Factor | Maximum Impact Distance/km | Weight | Distance Decay Function |
---|---|---|---|
Agricultural Land | 2 | 0.5 | Linear Decay |
Used Area | 4 | 0.8 | Exponential Decay |
Barren | 2 | 0.5 | Linear Decay |
Land-Use Types | Habitat Suitability | Agricultural Land | Used Area | Barren |
---|---|---|---|---|
Used Area | 0 | 0 | 0 | 0 |
Agricultural Land | 0.4 | 0.2 | 0.7 | 0.5 |
Forest | 1 | 0.6 | 0.8 | 0.7 |
Grass | 0.6 | 0.6 | 0.75 | 0.4 |
Wetland | 0.8 | 0.5 | 0.7 | 0.6 |
Barren | 0 | 0 | 0 | 0 |
Water | 0.9 | 0.4 | 0.8 | 0.6 |
Land-Use Type | 1988 | 1997 | 2009 | 2019 | ||||
---|---|---|---|---|---|---|---|---|
Area | Proportion | Area | Proportion | Area | Proportion | Area | Proportion | |
Used Area | 12,040.56 | 15.44 | 15,381.45 | 19.72 | 18,663.03 | 23.93 | 23,321.25 | 29.90 |
Agricultural Land | 15,230.34 | 19.53 | 12,844.71 | 16.47 | 11,405.34 | 14.62 | 7419.69 | 9.51 |
Forest | 39,466.44 | 50.60 | 36,400.68 | 46.67 | 37,905.57 | 48.60 | 35,951.94 | 46.10 |
Grass | 4842.36 | 6.21 | 6114.15 | 7.84 | 3586.95 | 4.60 | 3321 | 4.25 |
Wetland | 135.54 | 0.17 | 518.76 | 0.67 | 492.57 | 0.63 | 1337.85 | 1.72 |
Barren | 1589.58 | 2.04 | 3304.53 | 4.24 | 2970.36 | 3.81 | 3805.2 | 4.88 |
Water | 4687.83 | 6.01 | 3428.37 | 4.40 | 2968.83 | 3.81 | 2840.31 | 3.64 |
Year | Land-Use Type/ha | Used Area | Agricultural Land | Forest | Grass | Wetland | Barren | Water |
---|---|---|---|---|---|---|---|---|
1988–1997 | Used Area | 10,078.56 | 307.89 | 238.77 | 797.4 | 25.29 | 544.14 | 48.51 |
Agricultural Land | 1750.14 | 9539.82 | 1566.54 | 1093.05 | 156.69 | 955.71 | 168.39 | |
Forest | 1030.32 | 1984.5 | 33,053.04 | 2564.91 | 134.82 | 508.23 | 190.62 | |
Grass | 1047.51 | 733.59 | 1387.62 | 1327.86 | 12.42 | 304.74 | 28.62 | |
Wetland | 57.6 | 10.44 | 9 | 10.8 | 13.32 | 13.59 | 20.79 | |
Barren | 731.7 | 166.23 | 46.89 | 197.73 | 35.73 | 391.41 | 19.89 | |
Water | 685.62 | 102.24 | 98.82 | 122.4 | 140.49 | 586.71 | 2951.55 | |
1997–2009 | Used Area | 15,009.3 | 149.13 | 74.25 | 11.34 | 2.61 | 120.87 | 13.95 |
Agricultural Land | 418.77 | 10,634.13 | 1106.82 | 103.5 | 11.52 | 556.92 | 13.05 | |
Forest | 480.51 | 290.07 | 34,966.98 | 232.02 | 2.7 | 418.95 | 9.45 | |
Grass | 976.77 | 140.04 | 1679.49 | 3234.15 | 0.63 | 80.73 | 2.34 | |
Wetland | 13.77 | 8.73 | 8.64 | 0.27 | 467.1 | 16.2 | 4.05 | |
Barren | 1531.17 | 180.9 | 33.39 | 5.31 | 0.72 | 1546.11 | 6.93 | |
Water | 232.74 | 2.34 | 36 | 0.36 | 7.29 | 230.58 | 2919.06 | |
2009–2019 | Used Area | 18,193.32 | 0.09 | 0 | 43.47 | 73.71 | 286.92 | 65.52 |
Agricultural Land | 1573.38 | 7408.71 | 7.83 | 273.24 | 714.6 | 1334.25 | 93.33 | |
Forest | 1207.98 | 9.81 | 35,908.74 | 228.15 | 21.42 | 399.51 | 129.96 | |
Grass | 886.23 | 1.08 | 2.52 | 2567.34 | 19.89 | 81.45 | 28.44 | |
Wetland | 33.66 | 0 | 0 | 0 | 357.84 | 25.56 | 75.51 | |
Barren | 1231.83 | 0 | 22.84 | 196.11 | 71.1 | 1418.67 | 18.81 | |
Water | 195.75 | 0 | 0 | 4.14 | 79.83 | 259.29 | 2429.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Heo, S. Spatiotemporal Evolution and Scenario-Based Simulation of Habitat Quality in a Coastal Mountainous City: A Case Study of Busan, South Korea. Land 2025, 14, 1805. https://doi.org/10.3390/land14091805
Wang Z, Heo S. Spatiotemporal Evolution and Scenario-Based Simulation of Habitat Quality in a Coastal Mountainous City: A Case Study of Busan, South Korea. Land. 2025; 14(9):1805. https://doi.org/10.3390/land14091805
Chicago/Turabian StyleWang, Zheng, and Sanghyeun Heo. 2025. "Spatiotemporal Evolution and Scenario-Based Simulation of Habitat Quality in a Coastal Mountainous City: A Case Study of Busan, South Korea" Land 14, no. 9: 1805. https://doi.org/10.3390/land14091805
APA StyleWang, Z., & Heo, S. (2025). Spatiotemporal Evolution and Scenario-Based Simulation of Habitat Quality in a Coastal Mountainous City: A Case Study of Busan, South Korea. Land, 14(9), 1805. https://doi.org/10.3390/land14091805