AI-Enhanced Remote Sensing of Land Transformations for Climate-Related Financial Risk Assessment in Housing Markets: A Review
Abstract
1. Introduction
2. Review Methodology and Conceptual Framework
2.1. Review Methodology
2.2. Conceptual Framework
3. Empirical Insights on Climate Risk Impacts in Housing Markets and Financial Systems
4. Limitations in Assessing Climate-Related Financial Risks in Housing Markets
5. Current Research on AI-Driven Remote Sensing for Climate Risk and Impact Analysis
6. Integrating AI-Enhanced Remote Sensing into Housing Market Climate Risk Assessment
6.1. Current Status of AI-Driven Remote Sensing in Housing Finance Research
6.2. A Framework for Using AI-Enhanced Remote Sensing in Housing Market Climate Risk Analysis
6.2.1. Overall Framework
6.2.2. Integrating Behavioral Data for Improved Climate Risk Assessment
6.2.3. Innovation of This Framework
6.3. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benjamin, J.D.; Chinloy, P.; Jud, G.D. Real estate versus financial wealth in consumption. J. Real Estate Financ. Econ. 2004, 29, 341–354. [Google Scholar] [CrossRef]
- Fabozzi, F.J. (Ed.) The Handbook of Mortgage-Backed Securities; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Campiglio, E.; Daumas, L.; Monnin, P.; von Jagow, A. Climate-related risks in financial assets. J. Econ. Surv. 2023, 37, 950–992. [Google Scholar] [CrossRef]
- Ostriker, A.; Russo, A. The Effects of Floodplain Regulation on Housing Markets; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2022; Available online: https://ostriker.github.io/papers/Ostriker-Russo_floodplain-regulations.pdf (accessed on 15 April 2025).
- TCFD (Task Force on Climate-related Financial Disclosures). Final Report: Recommendations of the Task Force on Climate-Related Financial Disclosures; Financial Stability Board; Bank for International Settlements: Basel, Switzerland, 2017; Available online: https://www.fsb-tcfd.org/publications/final-recommendations-report/ (accessed on 15 April 2025).
- US Securities and Exchange Commission. The Enhancement and Standardization of Climate-Related Disclosures for Investors. Proposed Rule. Fed. Regist. 2022, 87, 21334–21437. Available online: https://www.sec.gov/rules/proposed/2022/33-11042.pdf (accessed on 15 April 2025).
- Al Shafian, S.; Hu, D. Integrating machine learning and remote sensing in disaster management: A decadal review of post-disaster building damage assessment. Buildings 2024, 14, 2344. [Google Scholar] [CrossRef]
- Harrison, D.; Smersh, G.T.; Schwartz, A. Environmental determinants of housing prices: The impact of flood zone status. J. Real Estate Res. 2001, 21, 3–20. [Google Scholar] [CrossRef]
- Troy, A.; Romm, J. Assessing the price effects of flood hazard disclosure under the California natural hazard disclosure law (AB 1195). J. Environ. Plan. Manag. 2004, 47, 137–162. [Google Scholar] [CrossRef]
- Bin, O.; Landry, C.E. Changes in implicit flood risk premiums: Empirical evidence from the housing market. J. Environ. Econ. Manag. 2013, 65, 361–376. [Google Scholar] [CrossRef]
- Atreya, A.; Ferreira, S.; Kriesel, W. Forgetting the flood? An analysis of the flood risk discount over time. Land Econ. 2013, 89, 577–596. [Google Scholar] [CrossRef]
- Zhang, L.; Leonard, T. Flood hazards impact on neighborhood house prices. J. Real Estate Financ. Econ. 2019, 58, 656–674. [Google Scholar] [CrossRef]
- Yi, D.; Choi, H. Housing market response to new flood risk information and the impact on poor tenant. J. Real Estate Financ. Econ. 2020, 61, 55–79. [Google Scholar] [CrossRef]
- Ratnadiwakara, D.; Venugopal, B. Do areas affected by flood disasters attract lower-income and less creditworthy homeowners? J. Hous. Res. 2020, 29 (Suppl. S1), S121–S143. [Google Scholar] [CrossRef]
- Davlasheridze, M.; Miao, Q. Natural disasters, public housing, and the role of disaster aid. J. Reg. Sci. 2021, 61, 1113–1135. [Google Scholar] [CrossRef]
- Kousky, C.; Kunreuther, H.; LaCour-Little, M.; Wachter, S. Flood risk and the US housing market. J. Hous. Res. 2020, 29 (Suppl. S1), S3–S24. [Google Scholar] [CrossRef]
- Pommeranz, C.; Steininger, B.I. Spatial spillovers in the pricing of flood risk: Insights from the housing market. J. Hous. Res. 2020, 29 (Suppl. S1), S54–S85. [Google Scholar] [CrossRef]
- Hino, M.; Burke, M. The effect of information about climate risk on property values. Proc. Natl. Acad. Sci. USA 2021, 118, e2003374118. [Google Scholar] [CrossRef]
- Gourevitch, J.D.; Kousky, C.; Liao, Y.; Nolte, C.; Pollack, A.B.; Porter, J.R.; Weill, J.A. Unpriced climate risk and the potential consequences of overvaluation in US housing markets. Nat. Clim. Change 2023, 13, 250–257. [Google Scholar] [CrossRef]
- Armal, S.; Porter, J.R.; Lingle, B.; Chu, Z.; Marston, M.L.; Wing, O.E. Assessing property level economic impacts of climate in the US, new insights and evidence from a comprehensive flood risk assessment tool. Climate 2020, 8, 116. [Google Scholar] [CrossRef]
- Atreya, A.; Ferreira, S. Seeing is believing? Evidence from property prices in inundated areas. Risk Anal. 2015, 35, 828–848. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, A.; Maddison, D.; Elliott, R.J. Is flood risk capitalized into property values? Ecol. Econ. 2018, 146, 668–685. [Google Scholar] [CrossRef]
- Daniel, V.E.; Florax, R.J.; Rietveld, P. Flooding risk and housing values: An economic assessment of environmental hazard. Ecol. Econ. 2009, 69, 355–365. [Google Scholar] [CrossRef]
- Gibson, M.; Mullins, J.T.; Hill, A. Climate Change, Flood Risk, and Property Values: Evidence from New York City; Working Paper; Department of Economics, Williams College: Williamstown, MA, USA, 2017; Available online: https://api.semanticscholar.org/CorpusID:15124428 (accessed on 15 April 2025).
- Shr, Y.H.J.; Zipp, K.Y. The aftermath of flood zone remapping: The asymmetric impact of flood maps on housing prices. Land Econ. 2019, 95, 174–192. [Google Scholar] [CrossRef]
- Bin, O.; Polasky, S. Effects of flood hazards on property values: Evidence before and after Hurricane Floyd. Land Econ. 2004, 80, 490–500. [Google Scholar] [CrossRef]
- Hallstrom, D.G.; Smith, V.K. Market responses to hurricanes. J. Environ. Econ. Manag. 2005, 50, 541–561. [Google Scholar] [CrossRef]
- Ewing, B.T.; Kruse, J.B.; Wang, Y. Local housing price index analysis in wind-disaster-prone areas. Nat. Hazards 2007, 40, 463–483. [Google Scholar] [CrossRef]
- Ortega, F.; Taṣpınar, S. Rising sea levels and sinking property values: Hurricane Sandy and New York’s housing market. J. Urban Econ. 2018, 106, 81–100. [Google Scholar] [CrossRef]
- Ellen, I.G.; Meltzer, R. Heterogeneity in the recovery of local real estate markets after extreme events: The case of hurricane Sandy. Real Estate Econ. 2024, 52, 714–752. [Google Scholar] [CrossRef]
- Cohen, J.P.; Barr, J.; Kim, E. Storm surges, informational shocks, and the price of urban real estate: An application to the case of hurricane Sandy. Reg. Sci. Urban Econ. 2021, 90, 103694. [Google Scholar] [CrossRef]
- Holtermans, R.; Niu, D.; Zheng, S. Quantifying the impacts of climate shocks in commercial real estate markets. J. Reg. Sci. 2024, 64, 1099–1121. [Google Scholar] [CrossRef]
- Fisher, J.D.; Rutledge, S.R. The impact of hurricanes on the value of commercial real estate. Bus. Econ. 2021, 56, 129–145. [Google Scholar] [CrossRef]
- Addoum, J.M.; Eichholtz, P.; Steiner, E.; Yönder, E. Climate change and commercial real estate: Evidence from hurricane Sandy. Real Estate Econ. 2024, 52, 687–713. [Google Scholar] [CrossRef]
- Zivin, J.G.; Liao, Y.; Panassie, Y. How hurricanes sweep up housing markets: Evidence from Florida. J. Environ. Econ. Manag. 2023, 118, 102770. [Google Scholar] [CrossRef]
- Fang, L.; Li, L.; Yavas, A. The impact of distant hurricane on local housing markets. J. Real Estate Financ. Econ. 2021, 66, 327–372. [Google Scholar] [CrossRef]
- Sutter, D.; Poitras, M. Do people respond to low probability risks? Evidence from tornado risk and manufactured homes. J. Risk Uncertain. 2010, 40, 181–196. [Google Scholar] [CrossRef]
- Murfin, J.; Spiegel, M. Is the risk of sea level rise capitalized in residential real estate? Rev. Financ. Stud. 2020, 33, 1217–1255. [Google Scholar] [CrossRef]
- Fan, Q.; Bakkensen, L.A. Household sorting as adaptation to hurricane risk in the United States. Land Econ. 2022, 98, 219–238. [Google Scholar] [CrossRef]
- Loomis, J. Do nearby forest fires cause a reduction in residential property values? J. For. Econ. 2004, 10, 149–157. [Google Scholar] [CrossRef]
- Mueller, J.; Loomis, J.; González-Cabán, A. Do repeated wildfires change homebuyers’ demand for homes in high-risk areas? A hedonic analysis of the short and long-term effects of repeated wildfires on house prices in Southern California. J. Real Estate Financ. Econ. 2009, 38, 155–172. [Google Scholar] [CrossRef]
- Stetler, K.M.; Venn, T.J.; Calkin, D.E. The effects of wildfire and environmental amenities on property values in northwest Montana, USA. Ecol. Econ. 2010, 69, 2233–2243. [Google Scholar] [CrossRef]
- Mueller, J.M.; Loomis, J.B. Does the estimated impact of wildfires vary with the housing price distribution? A quantile regression approach. Land Use Policy 2014, 41, 121–127. [Google Scholar] [CrossRef]
- Donovan, G.H.; Champ, P.A.; Butry, D.T. Wildfire risk and housing prices: A case study from Colorado Springs. Land Econ. 2007, 83, 217–233. [Google Scholar] [CrossRef]
- Champ, P.A.; Donovan, G.H.; Barth, C.M. Homebuyers and wildfire risk: A Colorado Springs case study. Soc. Nat. Resour. 2009, 23, 58–70. [Google Scholar] [CrossRef]
- Athukorala, W.; Martin, W.; Neelawala, P.; Rajapaksa, D.; Webb, J.; Wilson, C. The impact of natural disasters on residential property values: Evidence from Australia. In Economics of Natural Disasters; Sharma, S.K., Quah, E., Lee, Z., Eds.; World Scientific: Singapore, 2019; pp. 147–179. [Google Scholar] [CrossRef]
- McCoy, S.J.; Walsh, R.P. Wildfire risk, salience & housing demand. J. Environ. Econ. Manag. 2018, 91, 203–228. [Google Scholar] [CrossRef]
- Hansen, W.D.; Naughton, H.T. The effects of a spruce bark beetle outbreak and wildfires on property values in the wildland–urban interface of south-central Alaska, USA. Ecol. Econ. 2013, 96, 141–154. [Google Scholar] [CrossRef]
- Czajkowski, J.; Young, M.; Giammanco, I.; Nielsen, M.; Russo, E.; Cope, A.; Brandenburg, A.; Groshong, L. Application of Wildfire Mitigation to Insured Property Exposure; Technical Report, CIPR Research Report; NAIC: Kansas City, MO, USA, 2020; Available online: https://content.naic.org/sites/default/files/cipr_report_wildfire_mitigation.pdf (accessed on 15 April 2025).
- Bin, O.; Poulter, B.; Dumas, C.F.; Whitehead, J.C. Measuring the impact of sea-level rise on coastal real estate: A hedonic property model approach. J. Reg. Sci. 2011, 51, 751–767. [Google Scholar] [CrossRef]
- McAlpine, S.A.; Porter, J.R. Estimating recent local impacts of sea-level rise on current real-estate losses: A housing market case study in Miami-Dade, Florida. Popul. Res. Policy Rev. 2018, 37, 871–895. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.; Gustafson, M.T.; Lewis, R. Disaster on the horizon: The price effect of sea level rise. J. Financ. Econ. 2019, 134, 253–272. [Google Scholar] [CrossRef]
- Fu, X.; Nijman, J. Sea level rise, homeownership, and residential real estate markets in South Florida. Prof. Geogr. 2021, 73, 62–71. [Google Scholar] [CrossRef]
- Tyndall, J. Sea level rise and home prices: Evidence from Long Island. J. Real Estate Financ. Econ. 2023, 67, 579–605. [Google Scholar] [CrossRef]
- Conyers, Z.A.; Grant, R.; Roy, S.S. Sea level rise in Miami Beach: Vulnerability and real estate exposure. Prof. Geogr. 2019, 71, 278–291. [Google Scholar] [CrossRef]
- Palm, R.; Bolsen, T. Housing Market Response to Sea-Level Rise in Florida; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Bernstein, A.; Billings, S.B.; Gustafson, M.T.; Lewis, R. Partisan residential sorting on climate change risk. J. Financ. Econ. 2022, 146, 989–1015. [Google Scholar] [CrossRef]
- Kousky, C.; Palim, M.; Pan, Y. Flood damage and mortgage credit risk: A case study of hurricane Harvey. J. Hous. Res. 2020, 29 (Suppl. S1), S86–S120. [Google Scholar] [CrossRef]
- Du, D.; Zhao, X. Hurricanes and Residential Mortgage Loan Performance; Office of the Comptroller of the Currency (OCC) Working Paper; Office of the Comptroller of the Currency: Washington, DC, USA, 2020. Available online: https://www.occ.treas.gov/publications-and-resources/publications/economics/working-papers-banking-perf-reg/pub-econ-working-paper-hurricanes-residential-mort-loan-perf.pdf (accessed on 15 April 2025).
- Calabrese, R.; Dombrowski, T.; Mandel, A.; Pace, R.K.; Zanin, L. Impacts of extreme weather events on mortgage risks and their evolution under climate change: A case study on Florida. Eur. J. Oper. Res. 2024, 314, 377–392. [Google Scholar] [CrossRef]
- Gete, P.; Tsouderou, A.; Wachter, S.M. Climate risk in mortgage markets: Evidence from hurricanes Harvey and Irma. Real Estate Econ. 2024, 52, 660–686. [Google Scholar] [CrossRef]
- Rossi, C.V. Assessing the impact of hurricane frequency and intensity on mortgage delinquency. J. Risk Manag. Financ. Inst. 2021, 14, 426–442. [Google Scholar] [CrossRef]
- Ouazad, A.; Kahn, M.E. Mortgage Finance in the Face of Rising Climate Risk; NBER Working Paper Series, Working Paper 26322; National Bureau of Economic Research: Cambridge, MA, USA, 2019; Available online: https://www.nber.org/system/files/working_papers/w26322/revisions/w26322.rev1.pdf?ftag=msfd61514f (accessed on 15 April 2025).
- Sastry, P. Who Bears Flood Risk? Evidence from Mortgage Markets in Florida; Columbia Business School Working Paper. SSRN-4306291; Columbia Business School: New York, NY, USA, 2022; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4306291 (accessed on 15 April 2025).
- Keenan, J.M.; Bradt, J.T. Underwaterwriting: From theory to empiricism in regional mortgage markets in the US. Clim. Change 2020, 162, 2043–2067. [Google Scholar] [CrossRef]
- Duanmu, J.; Li, Y.; Lin, M.; Tahsin, S. Natural disaster risk and residential mortgage lending standards. J. Real Estate Res. 2022, 44, 106–130. [Google Scholar] [CrossRef]
- Bradt, J.T.; Kousky, C.; Wing, O.E. Voluntary purchases and adverse selection in the market for flood insurance. J. Environ. Econ. Manag. 2021, 110, 102515. [Google Scholar] [CrossRef]
- Billings, S.B.; Gallagher, E.A.; Ricketts, L. Let the rich be flooded: The distribution of financial aid and distress after hurricane Harvey. J. Financ. Econ. 2022, 146, 797–819. [Google Scholar] [CrossRef]
- Dombrowski, T.; Pace, R.K.; Ratnadiwakara, D.; Slawson, V.C., Jr. Deductible choice in flood insurance: Who chooses the maximum? J. Hous. Res. 2020, 29 (Suppl. S1), S144–S169. [Google Scholar] [CrossRef]
- Wagner, K.R. Adaptation and adverse selection in markets for natural disaster insurance. Am. Econ. J. Econ. Policy 2022, 14, 380–421. [Google Scholar] [CrossRef]
- Blickle, K.; Hamerling, S.N.; Morgan, D.P. How Bad Are Weather Disasters for Banks? Federal Reserve Bank of New York Staff Reports, No. 990; Federal Reserve Bank of New York: New York, NY, USA, 2021; Available online: https://www.econstor.eu/bitstream/10419/247913/1/sr990.pdf (accessed on 15 April 2025).
- Chivers, J.; Flores, N.E. Market failure in information: The national flood insurance program. Land Econ. 2002, 78, 515–521. [Google Scholar] [CrossRef]
- Hu, Z. Social interactions and households’ flood insurance decisions. J. Financ. Econ. 2022, 144, 414–432. [Google Scholar] [CrossRef]
- Liao, Y.; Mulder, P. What’s at Stake? Understanding the Role of Home Equity in Flood Insurance Demand; Office of Financial Research Paper Series, OFR 24-06, SSRN-3756332; Office of Financial Research: Washington, DC, USA, 2021; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3756332 (accessed on 15 April 2025).
- Nguyen, D.D.; Ongena, S.; Qi, S.; Sila, V. Climate change risk and the cost of mortgage credit. Rev. Financ. 2022, 26, 1509–1549. [Google Scholar] [CrossRef]
- Allman, E. Pricing climate change risk in corporate bonds. J. Asset Manag. 2022, 23, 596–618. [Google Scholar] [CrossRef]
- Fontana, A.; Jarmulska, B.; Schwarz, C.; Scheid, B.A.; Scheins, C. From Flood to Fire: Is Physical Climate Risk Taken into Account in Banks’ Residential Mortgage Rates? European Central Bank (ECB) Working Paper, No. 2025/3036; SSRN: Rochester, NY, USA, 2025; Available online: https://ssrn.com/abstract=5176497 (accessed on 15 April 2025).
- Chen, L.H.; Silva Gao, L. The pricing of climate risk. J. Financ. Econ. Pract. 2012, 12, 115–131. [Google Scholar] [CrossRef]
- Holtermans, R.; Kahn, M.E.; Kok, N. Climate risk and commercial mortgage delinquency. J. Reg. Sci. 2024, 64, 994–1037. [Google Scholar] [CrossRef]
- Sayce, S.L.; Clayton, J.; Devaney, S.; van de Wetering, J. Climate risks and their implications for commercial property valuations. J. Prop. Invest. Financ. 2022, 40, 430–443. [Google Scholar] [CrossRef]
- Attoh, E.M.; de Bruin, K.; Goosen, H.; van Veldhoven, F.; Ludwig, F. Making physical climate risk assessments relevant to the financial sector–Lessons learned from real estate cases in the Netherlands. Clim. Risk Manag. 2022, 37, 100447. [Google Scholar] [CrossRef]
- Brunetti, C.; Caramichael, J.; Crosignani, M.; Dennis, B.; Kotta, G.; Morgan, D.; Shin, C.; Zer, I. Climate-related financial stability risks for the United States: Methods and applications. Economic Policy Review. 2024, 30, 1–37. [Google Scholar]
- Dennis, B.N. Climate Change and Financial Policy: A Literature Review; Finance and Economics Discussion Series 2022-048; Board of Governors of the Federal Reserve System: Washington, DC, USA, 2022. [CrossRef]
- Craig, M. An overview of flood risk to the housing finance ecosystem. Cityscape 2022, 24, 345–368. [Google Scholar]
- Daniel, K.D.; Litterman, R.B.; Wagner, G. Applying Asset Pricing Theory to Calibrate the Price of Climate Risk; NBER Working Paper Series, Working Paper 22795; National Bureau of Economic Research: Cambridge, MA, USA, 2016; Available online: http://www.nber.org/papers/w22795 (accessed on 15 April 2025).
- Giglio, S.; Kelly, B.; Stroebel, J. Climate finance. Annu. Rev. Financ. Econ. 2021, 13, 15–36. [Google Scholar] [CrossRef]
- Patel, K.B. Managing climate risk in mortgage markets: A role for derivatives. Chic. Fed Lett. 2021, 462, 1–6. [Google Scholar] [CrossRef]
- Lefevre, A.; Tourin, A. Incorporating climate risk into credit risk modeling: An application in housing finance. FinTech 2023, 2, 614–640. [Google Scholar] [CrossRef]
- Blickle, K.; Santos, J.A. Unintended Consequences of “Mandatory” Flood Insurance; Staff Reports, Working Paper No. 1012; Federal Reserve Bank of New York: New York, NY, USA, 2022; Available online: https://www.econstor.eu/bitstream/10419/262062/1/sr1012.pdf (accessed on 15 April 2025).
- Allen, L.; Shan, Y.; Shen, Y. Do FinTech mortgage lenders fill the credit gap? Evidence from natural disasters. J. Financ. Quant. Anal. 2023, 58, 3342–3383. [Google Scholar] [CrossRef]
- Begley, T.A.; Gurun, U.G.; Purnanandam, A.; Weagley, D. Disaster lending: “fair” prices but “unfair” access. Manag. Sci. 2024, 70, 8484–8505. [Google Scholar] [CrossRef]
- Berkman, H.; Jona, J.; Soderstrom, N. Firm-specific climate risk and market valuation. Account. Organ. Soc. 2024, 112, 101547. [Google Scholar] [CrossRef]
- Faccini, R.; Matin, R.; Skiadopoulos, G. Dissecting climate risks: Are they reflected in stock prices? J. Bank. Financ. 2023, 155, 106948. [Google Scholar] [CrossRef]
- Gallagher, J.; Hartley, D. Household finance after a natural disaster: The case of hurricane Katrina. Am. Econ. J. Econ. Policy 2017, 9, 199–228. [Google Scholar] [CrossRef]
- Gallagher, J.; Hartley, D.; Rohlin, S. Weathering an unexpected financial shock: The role of federal disaster assistance on household finance and business survival. J. Assoc. Environ. Resour. Econ. 2023, 10, 525–567. [Google Scholar] [CrossRef]
- Garbarino, N.; Guin, B. High water, no marks? Biased lending after extreme weather. J. Financ. Stab. 2021, 54, 100874. [Google Scholar] [CrossRef]
- Issler, P.; Stanton, R.; Vergara-Alert, C.; Wallace, N.E. Mortgage Markets with Climate-Change Risk: Evidence from Wildfires in California; Fisher Center for Real Estate and Urban Economics, UC Berkeley: Berkeley, CA, USA, 2020. [Google Scholar] [CrossRef]
- Keys, B.J.; Mulder, P. Neglected No More: Housing Markets, Mortgage Lending, and Sea Level Rise; NBER Working Paper Series, Working Paper 27930. 2020. Available online: http://www.nber.org/papers/w27930 (accessed on 15 April 2025).
- Atreya, A.; Ferreira, S.; Michel-Kerjan, E. What drives households to buy flood insurance? New evidence from Georgia. Ecol. Econ. 2015, 117, 153–161. [Google Scholar] [CrossRef]
- Bakkensen, L.A.; Barrage, L. Going underwater? Flood risk belief heterogeneity and coastal home price dynamics. Rev. Financ. Stud. 2022, 35, 3666–3709. [Google Scholar] [CrossRef]
- Filippova, O.; Nguyen, C.; Noy, I.; Rehm, M. Who cares? Future sea level rise and house prices. Land Econ. 2020, 96, 207–224. [Google Scholar] [CrossRef]
- Gibson, M.; Mullins, J.T. Climate risk and beliefs in New York floodplains. J. Assoc. Environ. Resour. Econ. 2020, 7, 1069–1111. [Google Scholar] [CrossRef]
- Bailey, M.; Dávila, E.; Kuchler, T.; Stroebel, J. House price beliefs and mortgage leverage choice. Rev. Econ. Stud. 2019, 86, 2403–2452. [Google Scholar] [CrossRef]
- Baldauf, M.; Garlappi, L.; Yannelis, C. Does climate change affect real estate prices? Only if you believe in it. Rev. Financ. Stud. 2020, 33, 1256–1295. [Google Scholar] [CrossRef]
- Kelly, D.L.; Molina, R. Adaptation infrastructure and its effects on property values in the face of climate risk. J. Assoc. Environ. Resour. Econ. 2023, 10, 1405–1438. [Google Scholar] [CrossRef]
- Schuetz, J. How will US households adjust their housing behaviors in response to climate change? Real Estate Econ. 2024, 52, 596–617. [Google Scholar] [CrossRef]
- Duan, T.; Li, F.W. Climate change concerns and mortgage lending. J. Empir. Financ. 2024, 75, 101445. [Google Scholar] [CrossRef]
- Botzen, W.J.; Aerts, J.C.; van den Bergh, J.C. Willingness of homeowners to mitigate climate risk through insurance. Ecol. Econ. 2009, 68, 2265–2277. [Google Scholar] [CrossRef]
- Butsic, V.; Hanak, E.; Valletta, R.G. Climate change and housing prices: Hedonic estimates for ski resorts in western North America. Land Econ. 2011, 87, 75–91. [Google Scholar] [CrossRef]
- McNamara, D.E.; Keeler, A. A coupled physical and economic model of the response of coastal real estate to climate risk. Nat. Clim. Change 2013, 3, 559–562. [Google Scholar] [CrossRef]
- Semenenko, I.; Yoo, J. Climate change and real estate prices. Int. J. Econ. Financ. 2019, 11, 1. [Google Scholar] [CrossRef]
- Farzanegan, M.R.; Feizi, M.; Gholipour, H.F. Drought and property prices: Empirical evidence from provinces of Iran. Econ. Disasters Clim. Change 2021, 5, 203–221. [Google Scholar] [CrossRef]
- Bunten, D.M.; Kahn, M.E. The Impact of Emerging Climate Risks on Urban Real Estate Price Dynamics; NBER Working Paper Series, Working Paper 20018. 2014. Available online: http://www.nber.org/papers/w20018 (accessed on 15 April 2025).
- Thompson, J.J.; Wilby, R.L.; Hillier, J.K.; Connell, R.; Saville, G.R. Climate gentrification: Valuing perceived climate risks in property prices. Ann. Am. Assoc. Geogr. 2023, 113, 1092–1111. [Google Scholar] [CrossRef]
- Giglio, S.; Maggiori, M.; Rao, K.; Stroebel, J.; Weber, A. Climate change and long-run discount rates: Evidence from real estate. Rev. Financ. Stud. 2021, 34, 3527–3571. [Google Scholar] [CrossRef]
- Clayton, J.; Devaney, S.; Sayce, S.; Van de Wetering, J. Climate risk and real estate prices: What do we know? J. Portf. Manag. 2021, 47, 75–90. [Google Scholar] [CrossRef]
- Warren-Myers, G.; Hurlimann, A. Climate change and risk to real estate. In A Research Agenda for Real Estate; Tiwari, P., Miao, J.T., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 139–164. [Google Scholar]
- Contat, J.; Hopkins, C.; Mejia, L.; Suandi, M. When climate meets real estate: A survey of the literature. Real Estate Econ. 2024, 52, 618–659. [Google Scholar] [CrossRef]
- Votsis, A.; Perrels, A. Housing prices and the public disclosure of flood risk: A difference-in-differences analysis in Finland. J. Real Estate Financ. Econ. 2016, 53, 450–471. [Google Scholar] [CrossRef]
- Bonafilia, D.; Tellman, B.; Anderson, T.; Issenberg, E. Sen1Floods11: A georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 835–845. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Gebrehiwot, A.A. Flood extent mapping: An integrated method using deep learning and region growing using UAV optical data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2127–2135. [Google Scholar] [CrossRef]
- Ghosh, B.I.N.A.Y.A.K.; Garg, S.; Motagh, M. Automatic flood detection from sentinel-1 data using deep learning architectures. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 3, 201–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Chen, L.; Xu, M.; Guo, X.; Zhao, L. A new multi-source remote sensing image sample dataset with high resolution for flood area extraction: GF-FloodNet. Int. J. Digit. Earth 2023, 16, 2522–2554. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Li, Z. A near real-time flood-mapping approach by integrating social media and post-event satellite imagery. Ann. GIS 2018, 24, 113–123. [Google Scholar] [CrossRef]
- Konapala, G.; Kumar, S.V.; Ahmad, S.K. Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 180, 163–173. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Qayyum, S.; Heravi, A. Application of deep learning on UAV-based aerial images for flood detection. Smart Cities 2021, 4, 1220–1242. [Google Scholar] [CrossRef]
- Sadiq, R.; Akhtar, Z.; Imran, M.; Ofli, F. Integrating remote sensing and social sensing for flood mapping. Remote Sens. Appl. Soc. Environ. 2022, 25, 100697. [Google Scholar] [CrossRef]
- Yang, L.; Cervone, G. Analysis of remote sensing imagery for disaster assessment using deep learning: A case study of flooding event. Soft Comput. 2019, 23, 13393–13408. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Z.; Xiong, S.; Zhang, W.; Tang, J.; Li, Z.; An, B.; Li, R. A near-real-time flood detection method based on deep learning and SAR images. Remote Sens. 2023, 15, 2046. [Google Scholar] [CrossRef]
- Elkhrachy, I. Flash flood water depth estimation using SAR images, digital elevation models, and machine learning algorithms. Remote Sens. 2022, 14, 440. [Google Scholar] [CrossRef]
- Yokoya, N.; Yamanoi, K.; He, W.; Baier, G.; Adriano, B.; Miura, H.; Oishi, S. Breaking limits of remote sensing by deep learning from simulated data for flood and debris-flow mapping. IEEE Trans. Geosci. Remote Sens. 2020, 60, 4400115. [Google Scholar] [CrossRef]
- Al-Areeq, A.M.; Abba, S.I.; Yassin, M.A.; Benaafi, M.; Ghaleb, M.; Aljundi, I.H. Computational machine learning approach for flood susceptibility assessment integrated with remote sensing and GIS techniques from Jeddah, Saudi Arabia. Remote Sens. 2022, 14, 5515. [Google Scholar] [CrossRef]
- Amiri, A.; Soltani, K.; Ebtehaj, I.; Bonakdari, H. A novel machine learning tool for current and future flood susceptibility mapping by integrating remote sensing and geographic information systems. J. Hydrol. 2024, 632, 130936. [Google Scholar] [CrossRef]
- Avand, M.; Moradi, H. Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability. J. Hydrol. 2021, 595, 125663. [Google Scholar] [CrossRef]
- Ha, M.C.; Vu, P.L.; Nguyen, H.D.; Hoang, T.P.; Dang, D.D.; Dinh, T.B.H.; Şerban, G.; Rus, I.; Brețcan, P. Machine learning and remote sensing application for extreme climate evaluation: Example of flood susceptibility in the Hue Province, Central Vietnam Region. Water 2022, 14, 1617. [Google Scholar] [CrossRef]
- Lei, X.; Chen, W.; Panahi, M.; Falah, F.; Rahmati, O.; Uuemaa, E.; Kalantari, Z.; Ferreira, C.S.S.; Rezaie, F.; Tiefenbacher, J.P.; et al. Urban flood modeling using deep-learning approaches in Seoul, South Korea. J. Hydrol. 2021, 601, 126684. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xiong, J.; Cheng, W.; Sun, H.; Yong, Z.; Wang, N. Hybrid models incorporating bivariate statistics and machine learning methods for flash flood susceptibility assessment based on remote sensing datasets. Remote Sens. 2021, 13, 4945. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, D.K. Prediction of coastal flooding risk under climate change impacts in South Korea using machine learning algorithms. Environ. Res. Lett. 2020, 15, 094052. [Google Scholar] [CrossRef]
- Roohi, M.; Ghafouri, H.R.; Ashrafi, S.M. Advancing flood disaster management: Leveraging deep learning and remote sensing technologies. Acta Geophys. 2025, 73, 557–575. [Google Scholar] [CrossRef]
- Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami, S.; et al. Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sens. 2020, 12, 266. [Google Scholar] [CrossRef]
- Pham, B.T.; Luu, C.; Van Phong, T.; Trinh, P.T.; Shirzadi, A.; Renoud, S.; Asadi, S.; Van Le, H.; von Meding, J.; Clague, J.J. Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? J. Hydrol. 2021, 592, 125615. [Google Scholar] [CrossRef]
- Antzoulatos, G.; Kouloglou, I.O.; Bakratsas, M.; Moumtzidou, A.; Gialampoukidis, I.; Karakostas, A.; Lombardo, F.; Fiorin, R.; Norbiato, D.; Ferri, M.; et al. Flood hazard and risk mapping by applying an explainable machine learning framework using satellite imagery and GIS data. Sustainability 2022, 14, 3251. [Google Scholar] [CrossRef]
- Hasnaoui, Y.; Tachi, S.E.; Bouguerra, H.; Yaseen, Z.M.; Gilja, G.; Szczepanek, R.; Navarro-Pedreño, J. Integrated remote sensing and deep learning models for flash flood detection based on spatio-temporal land use and cover changes in the Mediterranean region. Environ. Model. Assess. 2025. [Google Scholar] [CrossRef]
- Islam, T.; Zeleke, E.B.; Afroz, M.; Melesse, A.M. A systematic review of urban flood susceptibility mapping: Remote sensing, machine learning, and other modeling approaches. Remote Sens. 2025, 17, 524. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.D.; Martínez-Álvarez, F.; Ngo, P.T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci. Total Environ. 2020, 701, 134413. [Google Scholar]
- Chen, J.; Huang, G.; Chen, W. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models. J. Environ. Manag. 2021, 293, 112810. [Google Scholar] [CrossRef]
- Costache, R.; Bao Pham, Q.; Corodescu-Roșca, E.; Cîmpianu, C.; Hong, H.; Thi Thuy Linh, N.; Fai, C.M.; Ahmed, A.N.; Vojtek, M.; Pandhiani, S.M.; et al. Using GIS, remote sensing, and machine learning to highlight the correlation between the land-use/land-cover changes and flash-flood potential. Remote Sens. 2020, 12, 1422. [Google Scholar] [CrossRef]
- Costache, R.; Arabameri, A.; Blaschke, T.; Pham, Q.B.; Pham, B.T.; Pandey, M.; Arora, A.; Linh, N.T.T.; Costache, I. Flash-flood potential mapping using deep learning, alternating decision trees and data provided by remote sensing sensors. Sensors 2021, 21, 280. [Google Scholar] [CrossRef]
- Mabdeh, A.N.; Ajin, R.S.; Razavi-Termeh, S.V.; Ahmadlou, M.; Al-Fugara, A.K. Enhancing the performance of machine learning and deep learning-based flood susceptibility models by integrating grey wolf optimizer (GWO) algorithm. Remote Sens. 2024, 16, 2595. [Google Scholar] [CrossRef]
- Bentivoglio, R.; Isufi, E.; Jonkman, S.N.; Taormina, R. Deep learning methods for flood mapping: A review of existing applications and future research directions. Hydrol. Earth Syst. Sci. 2022, 26, 4345–4378. [Google Scholar] [CrossRef]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H.B. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat. Nat. Hazards Risk 2017, 8, 1080–1102. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.I.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sens. 2019, 12, 106. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.; Waller, S.T. Remote sensing methods for flood prediction: A review. Sensors 2022, 22, 960. [Google Scholar] [CrossRef]
- Soria-Ruiz, J.; Fernandez-Ordoñez, Y.M.; Ambrosio-Ambrosio, J.P.; Escalona-Maurice, M.J.; Medina-García, G.; Sotelo-Ruiz, E.D.; Ramirez-Guzman, M.E. Flooded extent and depth analysis using optical and SAR remote sensing with machine learning algorithms. Atmosphere 2022, 13, 1852. [Google Scholar] [CrossRef]
- Asiri, M.M.; Aldehim, G.; Alruwais, N.; Allafi, R.; Alzahrani, I.; Nouri, A.M.; Assiri, M.; Ahmed, N.A. Coastal flood risk assessment using ensemble multi-criteria decision-making with machine learning approaches. Environ. Res. 2024, 245, 118042. [Google Scholar] [CrossRef]
- Muñoz, D.F.; Muñoz, P.; Moftakhari, H.; Moradkhani, H. From local to regional compound flood mapping with deep learning and data fusion techniques. Sci. Total Environ. 2021, 782, 146927. [Google Scholar] [CrossRef]
- Ahmadlou, M.; Al-Fugara, A.K.; Al-Shabeeb, A.R.; Arora, A.; Al-Adamat, R.; Pham, Q.B.; Al-Ansari, N.; Linh, N.T.T.; Sajedi, H. Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks. J. Flood Risk Manag. 2021, 14, e12683. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Janizadeh, S.; Shabani, F.; Ahmadi, K.; Shabani, F. Deep neural network utilizing remote sensing datasets for flood hazard susceptibility mapping in Brisbane, Australia. Remote Sens. 2021, 13, 2638. [Google Scholar] [CrossRef]
- Riazi, M.; Khosravi, K.; Shahedi, K.; Ahmad, S.; Jun, C.; Bateni, S.M.; Kazakis, N. Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms. Sci. Total Environ. 2023, 871, 162066. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ahn, D.; Bahk, J.; Park, S.; Rizqihandari, N.; Cha, M. Assessing climate risks from satellite imagery with machine learning: A case study of flood risks in Jakarta. Clim. Risk Manag. 2024, 46, 100651. [Google Scholar] [CrossRef]
- Ahmed, S.M.S.; Güneyli, H. Automatic post-tsunami loss modeling using deep learning CNN case study: Miyagi and Fukushima Japan tsunami. Nat. Hazards 2023, 117, 3371–3397. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, W.; Wang, X. Machine learning in tropical cyclone forecast modeling: A review. Atmosphere 2020, 11, 676. [Google Scholar] [CrossRef]
- Dawood, M.; Asif, A.; Minhas, F.U.A.A. Deep-PHURIE: Deep learning based hurricane intensity estimation from infrared satellite imagery. Neural Comput. Appl. 2020, 32, 9009–9017. [Google Scholar] [CrossRef]
- Devaraj, J.; Ganesan, S.; Elavarasan, R.M.; Subramaniam, U. A novel deep learning based model for tropical intensity estimation and post-disaster management of hurricanes. Appl. Sci. 2021, 11, 4129. [Google Scholar] [CrossRef]
- Essa, Y.; Hunt, H.G.; Gijben, M.; Ajoodha, R. Deep learning prediction of thunderstorm severity using remote sensing weather data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4004–4013. [Google Scholar] [CrossRef]
- Kim, T.; Yang, T.; Zhang, L.; Hong, Y. Near real-time hurricane rainfall forecasting using convolutional neural network models with Integrated Multi-satellitE Retrievals for GPM (IMERG) product. Atmos. Res. 2022, 270, 106037. [Google Scholar] [CrossRef]
- Martinez-Amaya, J.; Radin, C.; Nieves, V. Advanced machine learning methods for major hurricane forecasting. Remote Sens. 2022, 15, 119. [Google Scholar] [CrossRef]
- Tian, W.; Lai, L.; Niu, X.; Zhou, X.; Zhang, Y.; Sian, K.T.C.L.K. Estimation of tropical cyclone intensity using multi-platform remote sensing and deep learning with environmental field information. Remote Sens. 2023, 15, 2085. [Google Scholar] [CrossRef]
- Wang, C.; Li, X. Deep learning in extracting tropical cyclone intensity and wind radius information from satellite infrared images—A review. Atmos. Ocean. Sci. Lett. 2023, 16, 100373. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Huang, H.; Wang, X. A review on the application of machine learning methods in tropical cyclone forecasting. Front. Earth Sci. 2022, 10, 902596. [Google Scholar] [CrossRef]
- Maskey, M.; Ramachandran, R.; Ramasubramanian, M.; Gurung, I.; Freitag, B.; Kaulfus, A.; Bollinger, B.; Cecil, J.D.; Miller, J. Deepti: Deep-learning-based tropical cyclone intensity estimation system. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4271–4281. [Google Scholar] [CrossRef]
- Yao, S.; Chen, H.; Thompson, E.J.; Cifelli, R. An improved deep learning model for high-impact weather nowcasting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7400–7413. [Google Scholar] [CrossRef]
- Patil, H. Cyclone prediction from remote sensing images using hybrid deep learning approach based on AlexNet. Int. J. Image Graph. Signal Process. 2024, 16, 96–107. [Google Scholar] [CrossRef]
- Wimmers, A.; Velden, C.; Cossuth, J.H. Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Mon. Weather Rev. 2019, 147, 2261–2282. [Google Scholar] [CrossRef]
- Berezina, P.; Liu, D. Hurricane damage assessment using coupled convolutional neural networks: A case study of hurricane Michael. Geomat. Nat. Hazards Risk 2022, 13, 414–431. [Google Scholar] [CrossRef]
- Calton, L.; Wei, Z. Using artificial neural network models to assess hurricane damage through transfer learning. Appl. Sci. 2022, 12, 1466. [Google Scholar] [CrossRef]
- Cheng, C.S.; Behzadan, A.H.; Noshadravan, A. Deep learning for post-hurricane aerial damage assessment of buildings. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 695–710. [Google Scholar] [CrossRef]
- Kaur, S.; Gupta, S.; Singh, S. Hurricane damage detection using machine learning and deep learning techniques: A review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1022, 012035. [Google Scholar] [CrossRef]
- Kaur, S.; Gupta, S.; Singh, S.; Hoang, V.T.; Almakdi, S.; Alelyani, T.; Shaikh, A. Transfer learning-based automatic hurricane damage detection using satellite images. Electronics 2022, 11, 1448. [Google Scholar] [CrossRef]
- Kaur, S.; Gupta, S.; Singh, S.; Koundal, D.; Zaguia, A. Convolutional neural network based hurricane damage detection using satellite images. Soft Comput. 2022, 26, 7831–7845. [Google Scholar] [CrossRef]
- Li, Y.; Ye, S.; Bartoli, I. Semisupervised classification of hurricane damage from postevent aerial imagery using deep learning. J. Appl. Remote Sens. 2018, 12, 045008. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Jessen, B.; Barry, M.J.; Figueroa, M.; McIntosh, J.; Murray, T.; Schmid, J.; Muller-Karger, F.E. Mapping hurricane damage: A comparative analysis of satellite monitoring methods. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102134. [Google Scholar] [CrossRef]
- Sublime, J.; Kalinicheva, E. Automatic post-disaster damage mapping using deep-learning techniques for change detection: Case study of the Tohoku tsunami. Remote Sens. 2019, 11, 1123. [Google Scholar] [CrossRef]
- Sit, M.A.; Koylu, C.; Demir, I. Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: A case study of hurricane Irma. Int. J. Digit. Earth 2019, 12, 1205–1229. [Google Scholar] [CrossRef]
- Villegas, C.A.; Martinez, M.J. Lessons from Harvey: Improving traditional damage estimates with social media sourced damage estimates. Cities 2022, 121, 103500. [Google Scholar] [CrossRef]
- Arachchige, S.M.; Pradhan, B. AI meets the eye of the storm: Machine learning-driven insights for hurricane damage risk assessment in Florida. Earth Syst. Environ. 2025. [Google Scholar] [CrossRef]
- Klepac, S.; Subgranon, A.; Olabarrieta, M. A case study and parametric analysis of predicting hurricane-induced building damage using data-driven machine learning approach. Front. Built Environ. 2022, 8, 1015804. [Google Scholar] [CrossRef]
- Szczyrba, L.; Zhang, Y.; Pamukcu, D.; Eroglu, D.I.; Weiss, R. Quantifying the role of vulnerability in hurricane damage via a machine learning case study. Nat. Hazards Rev. 2021, 22, 04021028. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. Estimating daily inundation probability using remote sensing, riverine flood, and storm surge models: A case of hurricane Harvey. Remote Sens. 2020, 12, 1495. [Google Scholar] [CrossRef]
- Tiampo, K.F.; Huang, L.; Simmons, C.; Woods, C.; Glasscoe, M.T. Detection of flood extent using Sentinel-1A/B synthetic aperture radar: An application for hurricane Harvey, Houston, TX. Remote Sens. 2022, 14, 2261. [Google Scholar] [CrossRef]
- Veillette, M.; Samsi, S.; Mattioli, C. Sevir: A storm event imagery dataset for deep learning applications in radar and satellite meteorology. Adv. Neural Inf. Process. Syst. 2020, 33, 22009–22019. [Google Scholar]
- Verma, S.; Srivastava, K.; Tiwari, A.; Verma, S. Deep learning techniques in extreme weather events: A review. arXiv 2023, arXiv:2308.10995. [Google Scholar] [CrossRef]
- Bahadori, N.; Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Al-Kindi, K.M.; Abuhmed, T.; Nazeri, B.; Choi, S.M. Wildfire susceptibility mapping using deep learning algorithms in two satellite imagery dataset. Forests 2023, 14, 1325. [Google Scholar] [CrossRef]
- Bergado, J.R.; Persello, C.; Reinke, K.; Stein, A. Predicting wildfire burns from big geodata using deep learning. Saf. Sci. 2021, 140, 105276. [Google Scholar] [CrossRef]
- Ghali, R.; Akhloufi, M.A. Deep learning approaches for wildland fires using satellite remote sensing data: Detection, mapping, and prediction. Fire 2023, 6, 192. [Google Scholar] [CrossRef]
- Ghali, R.; Akhloufi, M.A. Deep learning approaches for wildland fires remote sensing: Classification, detection, and segmentation. Remote Sens. 2023, 15, 1821. [Google Scholar] [CrossRef]
- Gupta, R.; Kim, H. A geospatial approach to wildfire risk modeling using machine learning and remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 13570–13576. [Google Scholar] [CrossRef]
- Huot, F.; Hu, R.L.; Ihme, M.; Wang, Q.; Burge, J.; Lu, T.; Hickey, J.; Chen, Y.-F.; Anderson, J. Deep learning models for predicting wildfires from historical remote-sensing data. arXiv 2020, arXiv:2010.07445. [Google Scholar]
- Huot, F.; Hu, R.L.; Goyal, N.; Sankar, T.; Ihme, M.; Chen, Y.F. Next day wildfire spread: A machine learning dataset to predict wildfire spreading from remote-sensing data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4412513. [Google Scholar] [CrossRef]
- Illarionova, S.; Shadrin, D.; Gubanov, F.; Shutov, M.; Tasuev, U.; Evteeva, K.; Mironenko, M.; Burnaev, E. Exploration of geo-spatial data and machine learning algorithms for robust wildfire occurrence prediction. Sci. Rep. 2025, 15, 10712. [Google Scholar] [CrossRef]
- Jonnalagadda, A.V.; Hashim, H.A. SegNet: A segmented deep learning based convolutional neural network approach for drones wildfire detection. Remote Sens. Appl. Soc. Environ. 2024, 34, 101181. [Google Scholar] [CrossRef]
- Kanwal, R.; Rafaqat, W.; Iqbal, M.; Weiguo, S. Data-driven approaches for wildfire mapping and prediction assessment using a convolutional neural network (CNN). Remote Sens. 2023, 15, 5099. [Google Scholar] [CrossRef]
- Naderpour, M.; Rizeei, H.M.; Ramezani, F. Forest fire risk prediction: A spatial deep neural network-based framework. Remote Sens. 2021, 13, 2513. [Google Scholar] [CrossRef]
- dos Santos, S.M.B.; Duverger, S.G.; Bento-Gonçalves, A.; Franca-Rocha, W.; Vieira, A.; Teixeira, G. Remote sensing applications for mapping large wildfires based on machine learning and time series in northwestern Portugal. Fire 2023, 6, 43. [Google Scholar] [CrossRef]
- Yue, W.; Ren, C.; Liang, Y.; Liang, J.; Lin, X.; Yin, A.; Wei, Z. Assessment of wildfire susceptibility and wildfire threats to ecological environment and urban development based on GIS and multi-source data: A case study of Guilin, China. Remote Sens. 2023, 15, 2659. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Deep neural networks for global wildfire susceptibility modelling. Ecol. Indic. 2021, 127, 107735. [Google Scholar] [CrossRef]
- Agrawal, N.; Nelson, P.V.; Low, R.D. A novel approach for predicting large wildfires using machine learning towards environmental justice via environmental remote sensing and atmospheric reanalysis data across the United States. Remote Sens. 2023, 15, 5501. [Google Scholar] [CrossRef]
- Gholamnia, K.; Gudiyangada Nachappa, T.; Ghorbanzadeh, O.; Blaschke, T. Comparisons of diverse machine learning approaches for wildfire susceptibility mapping. Symmetry 2020, 12, 604. [Google Scholar] [CrossRef]
- Hu, P.; Tanchak, R.; Wang, Q. Developing risk assessment framework for wildfire in the United States–a deep learning approach to safety and sustainability. J. Saf. Sustain. 2024, 1, 26–41. [Google Scholar] [CrossRef]
- Iban, M.C.; Sekertekin, A. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey. Ecol. Inform. 2022, 69, 101647. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Janiec, P.; Gadal, S. A comparison of two machine learning classification methods for remote sensing predictive modeling of the forest fire in the North-Eastern Siberia. Remote Sens. 2020, 12, 4157. [Google Scholar] [CrossRef]
- Kang, Y.; Sung, T.; Im, J. Toward an adaptable deep-learning model for satellite-based wildfire monitoring with consideration of environmental conditions. Remote Sens. Environ. 2023, 298, 113814. [Google Scholar] [CrossRef]
- Kondylatos, S.; Prapas, I.; Ronco, M.; Papoutsis, I.; Camps-Valls, G.; Piles, M.; Fernández-Torres, M.; Carvalhais, N. Wildfire danger prediction and understanding with deep learning. Geophys. Res. Lett. 2022, 49, e2022GL099368. [Google Scholar] [CrossRef]
- Matougui, Z.; Zouidi, M. A temporal perspective on the reliability of wildfire hazard assessment based on machine learning and remote sensing data. Earth Sci. Inform. 2025, 18, 19. [Google Scholar] [CrossRef]
- Malik, A.; Jalin, N.; Rani, S.; Singhal, P.; Jain, S.; Gao, J. Wildfire risk prediction and detection using machine learning in San Diego, California. In Proceedings of the 2021 IEEE Smartworld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), Atlanta, GA, USA, 18–21 October 2021; pp. 622–629. [Google Scholar] [CrossRef]
- Prapas, I.; Kondylatos, S.; Papoutsis, I.; Camps-Valls, G.; Ronco, M.; Fernández-Torres, M.Á.; Guillem, P.M.; Carvalhais, N. Deep learning methods for daily wildfire danger forecasting. arXiv 2021, arXiv:2111.02736. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Chanussot, J. Burnt-Net: Wildfire burned area mapping with single post-fire Sentinel-2 data and deep learning morphological neural network. Ecol. Indic. 2022, 140, 108999. [Google Scholar] [CrossRef]
- Singh, H.; Ang, L.M.; Srivastava, S.K. Active wildfire detection via satellite imagery and machine learning: An empirical investigation of Australian wildfires. Nat. Hazards 2025, 121, 9777–9800. [Google Scholar] [CrossRef]
- Toan, N.T.; Cong, P.T.; Hung, N.Q.V.; Jo, J. A deep learning approach for early wildfire detection from hyperspectral satellite images. In Proceedings of the 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), Daejeon, Republic of Korea, 1–3 November 2019; pp. 38–45. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, H.; Wang, S.; Ma, X. A multi-scale deep learning algorithm for enhanced forest fire danger prediction using remote sensing images. Forests 2024, 15, 1581. [Google Scholar] [CrossRef]
- Yang, S.; Lupascu, M.; Meel, K.S. Predicting forest fire using remote sensing data and machine learning. Proc. AAAI Conf. Artif. Intell. 2021, 35, 14983–14990. [Google Scholar] [CrossRef]
- Bhowmik, R.T.; Jung, Y.S.; Aguilera, J.A.; Prunicki, M.; Nadeau, K. A multi-modal wildfire prediction and early-warning system based on a novel machine learning framework. J. Environ. Manag. 2023, 341, 117908. [Google Scholar] [CrossRef]
- Anderson-Bell, J.; Schillaci, C.; Lipani, A. Predicting non-residential building fire risk using geospatial information and convolutional neural networks. Remote Sens. Appl. Soc. Environ. 2021, 21, 100470. [Google Scholar] [CrossRef]
- Kang, D.K.; Olsen, M.J.; Fischer, E.; Jung, J. Residential wildfire structural damage detection using deep learning to analyze uncrewed aerial system (UAS) imagery, aerial imagery, and satellite imagery. Fire Mater. 2023, 49, 744–761. [Google Scholar] [CrossRef]
- Li, S.; Dao, V.; Kumar, M.; Nguyen, P.; Banerjee, T. Mapping the wildland-urban interface in California using remote sensing data. Sci. Rep. 2022, 12, 5789. [Google Scholar] [CrossRef] [PubMed]
- Nur, A.S.; Kim, Y.J.; Lee, J.H.; Lee, C.W. Spatial prediction of wildfire susceptibility using hybrid machine learning models based on support vector regression in Sydney, Australia. Remote Sens. 2023, 15, 760. [Google Scholar] [CrossRef]
- Adebisi, N.; Balogun, A.L.; Min, T.H.; Tella, A. Advances in estimating sea level rise: A review of tide gauge, satellite altimetry and spatial data science approaches. Ocean Coast. Manag. 2021, 208, 105632. [Google Scholar] [CrossRef]
- Bahari, N.A.A.B.S.; Ahmed, A.N.; Chong, K.L.; Lai, V.; Huang, Y.F.; Koo, C.H.; Ng, J.L.; El-Shafie, A. Predicting sea level rise using artificial intelligence: A review. Arch. Comput. Methods Eng. 2023, 30, 4045–4062. [Google Scholar] [CrossRef]
- Bengoufa, S.; Niculescu, S.; Mihoubi, M.K.; Belkessa, R.; Rami, A.; Rabehi, W.; Abbad, K. Machine learning and shoreline monitoring using optical satellite images: Case study of the Mostaganem shoreline, Algeria. J. Appl. Remote Sens. 2021, 15, 026509. [Google Scholar] [CrossRef]
- Boussetta, A.; Niculescu, S.; Bengoufa, S.; Zagrarni, M.F. Deep and machine learning methods for the (semi-) automatic extraction of sandy shoreline and erosion risk assessment basing on remote sensing data (case of Jerba island-Tunisia). Remote Sens. Appl. Soc. Environ. 2023, 32, 101084. [Google Scholar] [CrossRef]
- Chowdhury, P.; Lakku, N.K.G.; Lincoln, S.; Seelam, J.K.; Behera, M.R. Climate change and coastal morphodynamics: Interactions on regional scales. Sci. Total Environ. 2023, 899, 166432. [Google Scholar] [CrossRef]
- Dang, K.B.; Dang, V.B.; Ngo, V.L.; Vu, K.C.; Nguyen, H.; Nguyen, D.A.; Nguyen, T.D.L.; Pham, T.P.N.; Giang, T.L.; Nguyen, H.D.; et al. Application of deep learning models to detect coastlines and shorelines. J. Environ. Manag. 2022, 320, 115732. [Google Scholar] [CrossRef]
- Din, A.H.M.; Zulkifli, N.A.; Hamden, M.H.; Aris, W.A.W. Sea level trend over Malaysian seas from multi-mission satellite altimetry and vertical land motion corrected tidal data. Adv. Space Res. 2019, 63, 3452–3472. [Google Scholar] [CrossRef]
- Erdem, F.; Bayram, B.; Bakirman, T.; Bayrak, O.C.; Akpinar, B. An ensemble deep learning based shoreline segmentation approach (WaterNet) from Landsat 8 OLI images. Adv. Space Res. 2021, 67, 964–974. [Google Scholar] [CrossRef]
- Khurram, S.; Pour, A.B.; Bagheri, M.; Ariffin, E.H.; Akhir, M.F.; Hamzah, S.B. Developments in deep learning algorithms for coastline extraction from remote sensing imagery: A systematic review. Earth Sci. Inform. 2025, 18, 292. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Tanaka, K.; Begum, M.A. Integrating GIS-remote sensing: A comprehensive approach to predict oceanographic health and coastal dynamics. Remote Sens. Earth Syst. Sci. 2025, 8, 200–212. [Google Scholar] [CrossRef]
- Kumar, L.; Afzal, M.S.; Afzal, M.M. Mapping shoreline change using machine learning: A case study from the eastern Indian coast. Acta Geophys. 2020, 68, 1127–1143. [Google Scholar] [CrossRef]
- Linh, T.G.; Kinh, B.D.; Thanh, Q.B. Coastline and shoreline change assessment in sandy coasts based on machine learning models and high-resolution satellite images. Vietnam J. Earth Sci. 2023, 45, 251–270. [Google Scholar]
- Lv, Q.; Wang, Q.; Song, X.; Ge, B.; Guan, H.; Lu, T.; Tao, Z. Research on coastline extraction and dynamic change from remote sensing images based on deep learning. Front. Environ. Sci. 2024, 12, 1443512. [Google Scholar] [CrossRef]
- Manaf, S.A.; Mustapha, N.; Sulaiman, M.N.; Husin, N.A.; Shafri, H.Z.M.; Razali, M.N. Hybridization of SLIC and Extra Tree for object-based image analysis in extracting shoreline from medium resolution satellite images. Int. J. Intell. Eng. Syst. 2018, 11, 62–72. [Google Scholar] [CrossRef]
- Shola, A.A.; Huaming, Y.U.; Kejian, W.U. Review of machine learning methods for sea level change modeling and prediction. Sci. Total Environ. 2024, 954, 176410. [Google Scholar]
- Tsiakos, C.A.D.; Chalkias, C. Use of machine learning and remote sensing techniques for shoreline monitoring: A review of recent literature. Appl. Sci. 2023, 13, 3268. [Google Scholar] [CrossRef]
- Park, S.J.; Achmad, A.R.; Syifa, M.; Lee, C.W. Machine learning application for coastal area change detection in Gangwon province, South Korea using high-resolution satellite imagery. J. Coast. Res. 2019, 90, 228–235. [Google Scholar] [CrossRef]
- Park, S.; Song, A. Shoreline change analysis with deep learning semantic segmentation using remote sensing and GIS data. KSCE J. Civ. Eng. 2024, 28, 928–938. [Google Scholar] [CrossRef]
- Pradeep, J.; Shaji, E.; Chandran, S.; Chandra, S.V.; Dev, S.D.; Babu, D.S. Assessment of coastal variations due to climate change using remote sensing and machine learning techniques: A case study from west coast of India. Estuar. Coast. Shelf Sci. 2022, 275, 107968. [Google Scholar] [CrossRef]
- Scala, P.; Manno, G.; Ciraolo, G. Semantic segmentation of coastal aerial/satellite images using deep learning techniques: An application to coastline detection. Comput. Geosci. 2024, 192, 105704. [Google Scholar] [CrossRef]
- Seale, C.; Redfern, T.; Chatfield, P.; Luo, C.; Dempsey, K. Coastline detection in satellite imagery: A deep learning approach on new benchmark data. Remote Sens. Environ. 2022, 278, 113044. [Google Scholar] [CrossRef]
- Splinter, K.D.; Harley, M.D.; Turner, I.L. Remote sensing is changing our view of the coast: Insights from 40 years of monitoring at Narrabeen-Collaroy, Australia. Remote Sens. 2018, 10, 1744. [Google Scholar] [CrossRef]
- Tzepkenlis, A.; Grammalidis, N.; Kontopoulos, C.; Charalampopoulou, V.; Kitsiou, D.; Pataki, Z.; Patera, A.; Nitis, T. An integrated monitoring system for coastal and Riparian areas based on remote sensing and machine learning. J. Mar. Sci. Eng. 2022, 10, 1322. [Google Scholar] [CrossRef]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.L.; Ritchie, A.C.; Warrick, J.A. The future of coastal monitoring through satellite remote sensing. Camb. Prism. Coast. Futures 2023, 1, e10. [Google Scholar] [CrossRef]
- Nieves, V.; Radin, C.; Camps-Valls, G. Predicting regional coastal sea level changes with machine learning. Sci. Rep. 2021, 11, 7650. [Google Scholar] [CrossRef]
- Raj, N.; Gharineiat, Z.; Ahmed, A.A.M.; Stepanyants, Y. Assessment and prediction of sea level trend in the South Pacific Region. Remote Sens. 2022, 14, 986. [Google Scholar] [CrossRef]
- Raj, N.; Brown, J. Prediction of mean sea level with GNSS-VLM correction using a hybrid deep learning model in Australia. Remote Sens. 2023, 15, 2881. [Google Scholar] [CrossRef]
- Raj, N.; Pasfield-Neofitou, S. Assessment and prediction of sea level and coastal wetland changes in small islands using remote sensing and artificial intelligence. Remote Sens. 2024, 16, 551. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Li, Z.; Liu, J.; Zhang, Y.; Wang, H. InSAR and machine learning reveal new understanding of coastal subsidence risk in the Yellow River Delta, China. Sci. Total Environ. 2024, 915, 170203. [Google Scholar] [CrossRef]
- Ashphaq, M.; Srivastava, P.K.; Mitra, D. Advancing climate change research: Robust methodology for precise mapping of sea level rise using satellite-derived bathymetry and the Google Earth Engine API. Remote Sens. Appl. Soc. Environ. 2025, 38, 101557. [Google Scholar] [CrossRef]
- Munoz, D.F.; Munoz, P.; Alipour, A.; Moftakhari, H.; Moradkhani, H.; Mortazavi, B. Fusing multisource data to estimate the effects of urbanization, sea level rise, and hurricane impacts on long-term wetland change dynamics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1768–1782. [Google Scholar] [CrossRef]
- Ennouali, Z.; Fannassi, Y.; Lahssini, G.; Benmohammadi, A.; Masria, A. Mapping coastal vulnerability using machine learning algorithms: A case study at north coastline of Sebou estuary, Morocco. Reg. Stud. Mar. Sci. 2023, 60, 102829. [Google Scholar] [CrossRef]
- Fogarin, S.; Zanetti, M.; Dal Barco, M.K.; Zennaro, F.; Furlan, E.; Torresan, S.; Pham, H.; Critto, A. Combining remote sensing analysis with machine learning to evaluate short-term coastal evolution trend in the shoreline of Venice. Sci. Total Environ. 2023, 859, 160293. [Google Scholar] [CrossRef] [PubMed]
- Sorkhabi, O.M.; Shadmanfar, B.; Al-Amidi, M.M. Deep learning of sea-level variability and flood for coastal city resilience. City Environ. Interact. 2023, 17, 100098. [Google Scholar] [CrossRef]
- He, Q.; Jiang, Z.; Wang, M.; Liu, K. Landslide and wildfire susceptibility assessment in Southeast Asia using ensemble machine learning methods. Remote Sens. 2021, 13, 1572. [Google Scholar] [CrossRef]
- Kim, C.; Park, S.; Han, H. Multi-hazard susceptibility mapping using machine learning approaches: A case study of South Korea. Remote Sens. 2025, 17, 1660. [Google Scholar] [CrossRef]
- Nachappa, T.G.; Ghorbanzadeh, O.; Gholamnia, K.; Blaschke, T. Multi-hazard exposure mapping using machine learning for the State of Salzburg, Austria. Remote Sens. 2020, 12, 2757. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Dang, D.K.; Bui, Q.T.; Petrisor, A.I. Multi-hazard assessment using machine learning and remote sensing in the North Central region of Vietnam. Trans. GIS 2023, 27, 1614–1640. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pouyan, S.; Bordbar, M.; Golkar, F.; Clague, J.J. Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination. Nat. Hazards 2023, 116, 3797–3816. [Google Scholar] [CrossRef]
- Rahmati, O.; Yousefi, S.; Kalantari, Z.; Uuemaa, E.; Teimurian, T.; Keesstra, S.; Pham, T.D.; Tien Bui, D. Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sens. 2019, 11, 1943. [Google Scholar] [CrossRef]
- Yousefi, S.; Pourghasemi, H.R.; Emami, S.N.; Pouyan, S.; Eskandari, S.; Tiefenbacher, J.P. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Sci. Rep. 2020, 10, 12144. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Disaster monitoring using unmanned aerial vehicles and deep learning. arXiv 2018, arXiv:1807.11805. [Google Scholar] [CrossRef]
- Nex, F.; Duarte, D.; Tonolo, F.G.; Kerle, N. Structural building damage detection with deep learning: Assessment of a state-of-the-art CNN in operational conditions. Remote Sens. 2019, 11, 2765. [Google Scholar] [CrossRef]
- Padmaja, S.M.; Naveenkumar, R.; Kumari, N.L.; Pimo, E.S.J.; Bindhu, M.; Konduri, B.; Jangir, P. Deep learning in remote sensing for climate-induced disaster resilience: A comprehensive interdisciplinary approach. Remote Sens. Earth Syst. Sci. 2025, 8, 145–160. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Q.; Law, K.H.; McKenna, F.; Yu, S.X.; Taciroglu, E.; Zsarnóczay, A.; Elhaddad, W.; Cetiner, B. Machine learning-based regional scale intelligent modeling of building information for natural hazard risk management. Autom. Constr. 2021, 122, 103474. [Google Scholar] [CrossRef]
- Abraham, K.; Abdelwahab, M.; Abo-Zahhad, M. Classification and detection of natural disasters using machine learning and deep learning techniques: A review. Earth Sci. Inform. 2024, 17, 869–891. [Google Scholar] [CrossRef]
- Kameswari, L. A review on application of machine learning techniques in climate change and disaster management. Technoarete Trans. Clim. Change Disaster Manag. Res. 2023, 2, 1–10. [Google Scholar]
- Kumar, D.; Bassill, N.P.; Ghosh, S. Analyzing recent trends in deep-learning approaches: A review on urban environmental hazards and disaster studies for monitoring, management, and mitigation toward sustainability. Int. J. Smart Sens. Intell. Syst. 2024, 17, 1–36. [Google Scholar] [CrossRef]
- Pugliese Viloria, A.D.J.; Folini, A.; Carrion, D.; Brovelli, M.A. Hazard susceptibility mapping with machine and deep learning: A literature review. Remote Sens. 2024, 16, 3374. [Google Scholar] [CrossRef]
- Caldecott, B.; Kruitwagen, L.; McCarten, M.; Zhou, X.; Lunsford, D.; Marchand, O.; Hadjikyriakou, P.; Bickel, V.; Sachs, T.; Bohn, N. Climate Risk Analysis from Space: Remote Sensing, Machine Learning, and the Future of Measuring Climate-Related Risk; University of Oxford: Oxford, UK, 2018; 53p, Available online: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5001359_2 (accessed on 15 April 2025).
- Keenan, J.M.; Hill, T.; Gumber, A. Climate gentrification: From theory to empiricism in Miami-Dade County, Florida. Environ. Res. Lett. 2018, 13, 054001. [Google Scholar] [CrossRef]
- Ouazad, A. Coastal flood risk in the mortgage market: Storm surge models’ predictions vs. flood insurance maps. arXiv 2020, arXiv:2006.02977. [Google Scholar] [CrossRef]
- Bency, A.J.; Rallapalli, S.; Ganti, R.K.; Srivatsa, M.; Manjunath, B.S. Beyond spatial auto-regressive models: Predicting housing prices with satellite imagery. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 320–329. [Google Scholar]
- Yao, Y.; Zhang, J.; Hong, Y.; Liang, H.; He, J. Mapping fine-scale urban housing prices by fusing remotely sensed imagery and social media data. Trans. GIS 2018, 22, 561–581. [Google Scholar] [CrossRef]
- Serdavaa, B. A Satellite Image Analysis on Housing Conditions and the Effectiveness of the Affordable Housing Mortgage Program in Mongolia: A Deep Learning Approach. SSRN 4664966. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4664966 (accessed on 15 April 2025).
- Choy, L.H.; Ho, W.K. The use of machine learning in real estate research. Land 2023, 12, 740. [Google Scholar] [CrossRef]
- Dimopoulos, T.; Bakas, N. Sensitivity analysis of machine learning models for the mass appraisal of real estate: Case study of residential units in Nicosia, Cyprus. Remote Sens. 2019, 11, 3047. [Google Scholar] [CrossRef]
- Tchuente, D.; Nyawa, S. Real estate price estimation in French cities using geocoding and machine learning. Ann. Oper. Res. 2022, 308, 571–608. [Google Scholar] [CrossRef]
- Jui, A.H.; Alam, S.; Nasiruddin, M.; Ahmed, A.; Mohaimin, M.R.; Rahman, M.K.; Anonna, F.R.; Akter, R. Understanding negative equity trends in US housing markets: A machine learning approach to predictive analysis. J. Econ. Financ. Account. Stud. 2023, 5, 99–120. [Google Scholar] [CrossRef]
- Zhou, X.; Tong, W.; Li, D. Modeling housing rent in the Atlanta metropolitan area using textual information and deep learning. ISPRS Int. J. Geo-Inf. 2019, 8, 349. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, K.; Yao, J.; Sun, M.; Sun, Y. Financial risk analysis using integrated data and transformer-based deep learning. J. Comput. Sci. Softw. Appl. 2024, 4, 1–8. [Google Scholar]
- Singireddy, S. Applying deep learning to mobile home and flood insurance risk evaluation. Am. Adv. J. Emerg. Discip. 2024, 2, 3067–4190. [Google Scholar] [CrossRef]
- Park, B.; Bae, J.K. Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Syst. Appl. 2015, 42, 2928–2934. [Google Scholar] [CrossRef]
- Sadhwani, A.; Giesecke, K.; Sirignano, J. Deep learning for mortgage risk. J. Financ. Econom. 2021, 19, 313–368. [Google Scholar] [CrossRef]
- Tekouabou, S.C.; Gherghina, Ş.C.; Kameni, E.D.; Filali, Y.; Idrissi Gartoumi, K. AI-based on machine learning methods for urban real estate prediction: A systematic survey. Arch. Comput. Methods Eng. 2024, 31, 1079–1095. [Google Scholar] [CrossRef]
- Kuppan, K.; Acharya, D.B.; Divya, B. Foundational AI in insurance and real estate: A survey of applications, challenges, and future directions. IEEE Access 2024, 12, 181282–181302. [Google Scholar] [CrossRef]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Gerardi, K.; Herkenhoff, K.F.; Ohanian, L.E.; Willen, P.S. Can’t pay or won’t pay? Unemployment, negative equity, and strategic default. Rev. Financ. Stud. 2018, 31, 1098–1131. [Google Scholar] [CrossRef]
- Williams, L.; Kay, D. Might I have to move due to climate change? The role of exposure to risk and political partisanship in anticipation of future relocation. Clim. Change 2024, 177, 142. [Google Scholar] [CrossRef]
- Eusse-Villa, L.; Bonardi Pellizzari, C.; Franceschinis, C.; Thiene, M.; Borga, M.; Scolobig, A. Identification of maladaptive behavioural patterns in response to extreme weather events. Sci. Rep. 2024, 14, 10563. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T. Advancements and challenges of artificial intelligence in climate modeling for sustainable urban planning. Front. Artif. Intell. 2025, 8, 1517986. [Google Scholar] [CrossRef] [PubMed]
- Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Appl. Soft Comput. 2020, 90, 106181. [Google Scholar] [CrossRef]
- Akbari, K.; Winter, S.; Tomko, M. Spatial causality: A systematic review on spatial causal inference. Geogr. Anal. 2023, 55, 56–89. [Google Scholar] [CrossRef]
- Kousky, C. Financing flood losses: A discussion of the national flood insurance program. Risk Manag. Insur. Rev. 2018, 21, 11–32. [Google Scholar] [CrossRef]
Climate Risk Type | Key Findings | Policy/Research Implications | Key Studies |
---|---|---|---|
Flooding | Property value discounts post-flood; price effects diminish over time; socio-economic vulnerability; underpricing due to lack of disclosure. | Enhance disclosure standards; improve flood mapping; expand insurance access; target support for vulnerable populations. | [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] |
Severe Weather | Sharp price drops post-hurricane/tornado; investor shifts; long-lasting effects in low-income areas; market reacts to distant disasters. | Develop early warning systems; integrate disaster risk into housing codes; support recovery in low-income areas. | [26,27,28,29,30,31,32,33,34,35,36,37,38,39] |
Wildfires | Price declines near burned areas; repeated fires worsen impacts; insurance pressures rising; mitigation improves resilience. | Promote fire-resistant building codes; incentivize mitigation; ensure insurance availability in high-risk zones. | [40,41,42,43,44,45,46,47,48,49] |
Sea-Level Rise (SLR) | Discounts in high-risk coastal areas; delayed market responses; risk reflected in appreciation rates; partisan and wealth-related variation. | Invest in coastal defenses; improve SLR projections and communication; consider relocation incentives. | [50,51,52,53,54,55,56,57] |
Financial Risk | Increased delinquency and default; lenders tighten credit; low insurance participation; pricing varies across institutions. | Integrate climate risk into underwriting; strengthen stress testing; close insurance and credit coverage gaps. | [58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98] |
Belief & Behavior | Risk underestimation common; belief shifts affect leverage and market behavior; infrastructure can raise values; risk perceptions highly localized. | Raise public awareness; incorporate behavioral insights into policy design; support adaptive infrastructure in at-risk areas. | [99,100,101,102,103,104,105,106,107,108] |
Multi-Hazard/Slow-Onset | Combined risks reduce homeownership, investment stability; spatial and temporal dynamics matter; adaptation capacity and gentrification trends noted. | Adopt multiscale risk assessments; link physical land change to financial systems; address climate gentrification risks. | [109,110,111,112,113,114,115,116,117,118] |
Limitations in Existing Literature | Description | How AI-Enhanced Remote Sensing Addresses It | Example Studies |
---|---|---|---|
Narrow Geographic and Hazard Scope | Studies often use localized, single-event cases and narrow hazard types, which limits generalizability and policy relevance. Coarse geographic units obscure parcel-level risks. | Enables broad, high-resolution monitoring of diverse and compound hazards (e.g., floods, fire, erosion) across wide geographies and over time, with parcel-level granularity. | [8,22,26,27,28,41,44,50,52] |
Behavioral and Informational Gaps | Risk perception is inferred indirectly via prices; awareness is often unknown. Literature rarely includes real-time alerts or behavioral mechanisms. | Provides real-time, visual risk indicators via maps and dashboards; supports modeling of awareness, relocation, and adaptation behavior. | [10,41,45,52,99] |
Methodological Constraints of Traditional Models | Hedonic models assume static hazards, rational expectations, and linear price responses—failing to capture nonlinear and evolving dynamics. | Enables adaptive, nonlinear risk modeling by fusing dynamic hazard layers with socioeconomic and market data. Learns behavior-informed valuation patterns. | [23,27,50] |
Lack of Temporal Depth and Real-Time Monitoring | Relies on pre/post-event snapshots, missing chronic risk build-up and delayed reactions. Lags in risk designations delay response. | Supports continuous hazard monitoring, near real-time updates, and early warning systems. Aligns model timelines with evolving risks. | [28,42,50,108] |
Lack of Multiscale Financial Integration | Most studies stop at the household level and don’t model how risks affect mortgages, insurers, and investors systemically. | Simulates feedback loops and cross-sector dependencies using spatial-financial integration; links exposure to credit, securitization, and investment. | [41,82,84] |
Equity and Distributional Blind Spots | Uses aggregate proxies (e.g., ZIP codes), missing vulnerable households. Rarely models insurance denial, displacement, or access gaps. | Enables fine-scale vulnerability mapping by fusing satellite data with disaggregated demographic, insurance, and tenure indicators. | [9,13,45,119] |
Hazard Type | Key AI-Driven Remote Sensing Applications | Key Studies |
---|---|---|
Floods | Flood extent mapping, susceptibility modeling, damage assessment using CNNs, U-Net, SAR, CHIRPS | [120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160] |
Severe Weather | Storm intensity tracking, rainfall prediction, post-disaster assessment, social sensing | [161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192] |
Wildfires | Fire susceptibility, burn area mapping, real-time detection using CNNs, ConvLSTM, hybrid models | [193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227] |
Sea-Level Rise | Shoreline change, erosion, subsidence detection using altimetry, InSAR, GNSS, semantic segmentation | [228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261] |
Multi-Hazard | Integrated hazard modeling, general disaster detection, damage assessment via ML/DL and UAV imagery | [7,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276] |
Dimension | AI-Driven Remote Sensing Studies | Economics/Finance Studies |
---|---|---|
Focus | Physical hazard detection and exposure mapping | Asset pricing, credit risk, and systemic transmission |
Data type | Satellite imagery, geospatial data | Panel housing data, mortgage records, insurance claims |
Strengths | High-resolution, real-time, spatial monitoring | Economic valuation, institutional modeling |
Limitations | Poor integration with financial metrics and behavior | Limited spatial precision, lagged hazard assessment |
Behavior modeling | Often missing or implicit | Explicit and empirically estimated |
Policy relevance | Strong for physical planning | Strong for regulatory, financial, and economic design |
Method Category | Example Algorithms/Models | Strengths | Limitations | Typical Data Requirements |
---|---|---|---|---|
Supervised Machine Learning (Ensemble Models) | Random Forest (RF), Gradient Boosting Machines (GBM, XGBoost) | High predictive accuracy; handles heterogeneous and missing data well; robust to overfitting with tuning. | Limited interpretability (“black box”); may require tuning for optimal performance; less suited for causal inference. | Moderate-sized tabular datasets; hazard indices; structured remote sensing outputs; socio-economic data. |
Deep Learning (Convolutional Neural Networks-CNNs) | CNNs (2D/3D), U-Net, ResNet variants | Excels at extracting spatial patterns from high-resolution remote sensing; strong performance in hazard detection tasks. | Requires large labeled datasets; high computational cost; prone to overfitting; limited extrapolation to unseen geographies. | High-resolution satellite or aerial imagery; labeled hazard datasets; GPU/TPU resources. |
Interpretable Machine Learning | Decision Trees, Generalized Additive Models (GAMs) | Transparent decision logic; easier for policy and regulatory adoption; lower computational demands. | May lose accuracy in high-dimensional or highly nonlinear data; less effective for complex spatial patterns. | Moderate-sized tabular datasets; socio-economic and hazard exposure data. |
Econometric Models | Hedonic Pricing Models, Spatial Lag Models, Spatial Error Models, Difference-in-Difference Models | Strong theoretical grounding; clear causal interpretation; integrates economic and behavioral insights. | Rigid assumptions; limited scalability; struggles with high-dimensional data; may require strong prior specifications. | Property transaction data; socio-economic indicators; hazard exposure metrics. |
Hybrid AI–Econometric Approaches | XGBoost + Spatial Lag Models, CNN + Hedonic Pricing | Combines predictive power of AI with interpretability of econometrics; enables spatial spillover analysis. | Still rare in literature; requires data harmonization; higher computational cost. | Integrated hazard from remote sensing, housing, and socio-economic datasets; spatially explicit formats. |
Challenges/Limitations | Details | Future Research Directions |
---|---|---|
Spatial Mismatch Between Data Sources | Remote sensing operates at sub-meter scale; financial data often only available at parcel, ZIP-code, or county level. | Develop spatial harmonization tools and hybrid data fusion techniques. |
Temporal Misalignment of Hazard and Financial Data | Environmental changes are detected daily, but financial outcomes manifest monthly or quarterly. | Link environmental signals to short-term proxies like mobile data or utility logs. |
Fragmented Behavioral and Regulatory Data | Zoning rules, FEMA updates, and behavioral responses are stored in non-standardized, fragmented formats. | Design data pipelines that incorporate regulatory metadata and behavioral proxies. |
Single-Task AI Modeling Limitations | Most models specialize in either image analysis or economic forecasting, not both together. | Explore transfer learning and multi-task neural networks spanning both domains. |
Lack of Explainability in AI Models | Existing AI tools lack transparency needed for lenders and regulators to make policy decisions. | Create interpretable AI aligned with regulatory reasoning and policy standards. |
Socio-Technical Barriers and Data Gaps in High-Exposure, Low-Resource Areas | Limited access to high-resolution satellite imagery, fragmented or confidential financial datasets, and missing land records and low digital capacity reduce framework utility in vulnerable regions. | Develop legal and institutional frameworks for cross-sector data sharing, apply privacy-preserving integration techniques, and explore uncertainty quantification, environmental analog-based imputation, and community co-production of data to enhance model reliability and relevance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Li, X. AI-Enhanced Remote Sensing of Land Transformations for Climate-Related Financial Risk Assessment in Housing Markets: A Review. Land 2025, 14, 1672. https://doi.org/10.3390/land14081672
Zhang C, Li X. AI-Enhanced Remote Sensing of Land Transformations for Climate-Related Financial Risk Assessment in Housing Markets: A Review. Land. 2025; 14(8):1672. https://doi.org/10.3390/land14081672
Chicago/Turabian StyleZhang, Chuanrong, and Xinba Li. 2025. "AI-Enhanced Remote Sensing of Land Transformations for Climate-Related Financial Risk Assessment in Housing Markets: A Review" Land 14, no. 8: 1672. https://doi.org/10.3390/land14081672
APA StyleZhang, C., & Li, X. (2025). AI-Enhanced Remote Sensing of Land Transformations for Climate-Related Financial Risk Assessment in Housing Markets: A Review. Land, 14(8), 1672. https://doi.org/10.3390/land14081672