Assessing the Impact of Urban Spatial Form on Land Surface Temperature Using Random Forest—Taking Beijing as a Case Study
Abstract
1. Introduction
2. Research Area and Methodology
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Processing of Landsat 8 Data
2.3.1. Calculation of Vegetation Coverage
2.3.2. LST Retrieval
2.3.3. Land-Use and Land-Cover Classification
2.4. Calculation of Spatial Morphology Metrics
2.5. Raw Data Cleaning
2.6. Urban Heat Island Classification
2.7. Random Forest Model Construction
3. Results and Analysis
3.1. Spatial Distribution of the Urban Heat Island
3.2. Distribution of the Random Forest Model
3.3. Relative Importance of Spatial Morphology Factors
3.4. Scale-Effect Analysis of Key Factors
3.5. Nonlinear Relationships at Optimal Scales
4. Discussion
4.1. Performance of the Random Forest Algorithm in the Study
4.2. Relationships Between Spatial Morphology Factors and the LST
4.3. Urban Planning Strategies to Mitigate the Heat Island Effect Within Beijing’s Fifth Ring Road
4.4. Innovations and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howard, L. The Climate of London: Deduced from Meteorological Observations Made in the Metropolis and at Various Places Around It; Harvey and Darton: London, UK, 1833; Volume 3. [Google Scholar]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; De Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J. Exploring Pathways Linking Greenspace to Health: Theoretical and Methodological Guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, L.L.; Stathopoulos, T.; Marey, A.M. Urban Microclimate and Its Impact on Built Environment—A Review. Build. Environ. 2023, 238, 110334. [Google Scholar] [CrossRef]
- Peng, J.; Qiao, R.; Wang, Q.; Yu, S.; Dong, J.; Yang, Z. Diversified Evolutionary Patterns of Surface Urban Heat Island in New Expansion Areas of 31 Chinese Cities. npj Urban Sustain. 2024, 4, 14. [Google Scholar] [CrossRef]
- Mukherji, A. Climate Change 2023 Synthesis Report; IPCC: Genevea, Switzerland, 2023. [Google Scholar]
- Estrada, F.; Botzen, W.W.; Tol, R.S. A Global Economic Assessment of City Policies to Reduce Climate Change Impacts. Nat. Clim. Change 2017, 7, 403–406. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The Role of City Size and Urban Form in the Surface Urban Heat Island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef]
- Stewart, I.D. A Systematic Review and Scientific Critique of Methodology in Modern Urban Heat Island Literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Fan, Q.; Mei, X.; Zhang, C.; Yang, X. Research on Gridding of Urban Spatial Form Based on Fractal Theory. ISPRS Int. J. Geo-Inf. 2022, 11, 622. [Google Scholar] [CrossRef]
- Fang, G. Prediction and Analysis of Urban Heat Island Effect in Dangshan by Remote Sensing. Int. J. Smart Sens. Intell. Syst. 2015, 8, 2195. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A. Modelling Urban Cooling Island Impact of Green Space and Water Bodies on Surface Urban Heat Island in a Continuously Developing Urban Area. Model. Earth Syst. Environ. 2018, 4, 501–515. [Google Scholar] [CrossRef]
- Sekertekin, A.; Zadbagher, E. Simulation of Future Land Surface Temperature Distribution and Evaluating Surface Urban Heat Island Based on Impervious Surface Area. Ecol. Indic. 2021, 122, 107230. [Google Scholar] [CrossRef]
- Influence of urban morphological characteristics on thermal environment. Sustain. Cities Soc. 2021, 72, 103045. [CrossRef]
- Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C.; Hese, S. Spatio-Temporal Analysis of the Relationship between 2D/3D Urban Site Characteristics and Land Surface Temperature. Remote Sens. Environ. 2017, 193, 225–243. [Google Scholar] [CrossRef]
- Zheng, B.; Bernard Bedra, K.; Zheng, J.; Wang, G. Combination of Tree Configuration with Street Configuration for Thermal Comfort Optimization under Extreme Summer Conditions in the Urban Center of Shantou City, China. Sustainability 2018, 10, 4192. [Google Scholar] [CrossRef]
- Separate and combined effects of 3D building features and urban green space on land surface temperature. J. Environ. Manag. 2021, 295, 113116. [CrossRef] [PubMed]
- Li, J.; Liu, Z.; Tang, X.; Liu, Y.; Qin, C.; Wu, Y. Strong Modulation of Building Height on Surface Urban Heat Island in Global Cities: A Local Climate Zone Perspective; SSRN: Rochester, NY, USA, 2024. [Google Scholar]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the Impact of Urban Morphology Heterogeneity on Land Surface Temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the Effects of 3D Urban Morphology on the Surface Urban Heat Island Effect in Urban Functional Zones by Using High-Resolution Remote Sensing Data: A Case Study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Sun, F.; Liu, M.; Wang, Y.; Wang, H.; Che, Y. The Effects of 3D Architectural Patterns on the Urban Surface Temperature at a Neighborhood Scale: Relative Contributions and Marginal Effects. J. Clean. Prod. 2020, 258, 120706. [Google Scholar] [CrossRef]
- Logan, T.M.; Zaitchik, B.; Guikema, S.; Nisbet, A. Night and Day: The Influence and Relative Importance of Urban Characteristics on Remotely Sensed Land Surface Temperature. Remote Sens. Environ. 2020, 247, 111861. [Google Scholar] [CrossRef]
- Han, W. Analyzing the Scale Dependent Effect of Urban Building Morphology on Land Surface Temperature Using Random Forest Algorithm. Sci. Rep. 2023, 13, 19312. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, Y.; Zhao, J.; Wang, D. Comprehensively Assessing Seasonal Variations in the Impact of Urban Greenspace Morphology on Urban Heat Island Effects: A Multidimensional Analysis. Sustain. Cities Soc. 2025, 118, 106014. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Xiao, Q.; Fang, K.; Ha, S.; Liu, H.; Teng, M.; Wu, X.; Wu, C. Ameliorating Canopy Urban Heat Island in Block Level: A Holistic Investigation into the Radius, Form, and Typologies. Build. Environ. 2025, 282, 113281. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Liu, X.; Zhang, B. Complexity of the Relationship between 2D/3D Urban Morphology and the Land Surface Temperature: A Multiscale Perspective. Environ. Sci. Pollut. Res. 2021, 28, 66804–66818. [Google Scholar] [CrossRef]
- Ge, Z.; Zhen, T.; Qi, W.; Yongqing, S.; Yan, Y.; Haitao, W. Study on the Influence of Urban Form on Land Surface Temperature Based on Machine Learning. Environ. Sci. Technol 2022, 45, 214–227. [Google Scholar]
- Han, G.F.; Cai, Z.; Xie, Y.S.; Zeng, W. Correlation between Urban Construction and Urban Heat Island: A Case Study in Kaizhou District, Chongqing. J. Civ. Arch. Environ. Eng. 2016, 38, 138–147. [Google Scholar]
- Ivajnšič, D.; Kaligarič, M.; Žiberna, I. Geographically Weighted Regression of the Urban Heat Island of a Small City. Appl. Geogr. 2014, 53, 341–353. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Z.; Yang, C.; Li, H.; Gong, L.; Guo, F. On the Scale Effect of Relationship Identification between Land Surface Temperature and 3D Landscape Pattern: The Application of Random Forest. Remote Sens. 2022, 14, 279. [Google Scholar] [CrossRef]
- Saha, M.; Kafy, A.A.; Bakshi, A.; Almulhim, A.I.; Rahaman, Z.A.; Al Rakib, A.; Fattah, M.A.; Akter, K.S.; Rahman, M.T.; Rakib, A.A.; et al. Modelling microscale impacts assessment of urban expansion on seasonal surface urban heat island intensity using neural network algorithms. Energy Build. 2022, 275, 112452. [Google Scholar] [CrossRef]
- Liu, Q.; Hang, T.; Wu, Y. Unveiling Differential Impacts of Multidimensional Urban Morphology on Heat Island Effect across Local Climate Zones: Interpretable CatBoost-SHAP Machine Learning Model. Build. Environ. 2025, 270, 112574. [Google Scholar] [CrossRef]
- Tanoori, G.; Soltani, A.; Modiri, A. Machine Learning for Urban Heat Island (UHI) Analysis: Predicting Land Surface Temperature (LST) in Urban Environments. Urban Clim. 2024, 55, 101962. [Google Scholar] [CrossRef]
- Lan, T.; Peng, J.; Liu, Y.; Zhao, Y.; Dong, J.; Jiang, S.; Cheng, X.; Corcoran, J. The Future of China’s Urban Heat Island Effects: A Machine Learning Based Scenario Analysis on Climatic-Socioeconomic Policies. Urban Clim. 2023, 49, 101463. [Google Scholar] [CrossRef]
- Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-Scale Modeling of the Urban Heat Island: A Comparison of Multiple Linear Regression and Random Forest Approaches. Sci. Total Environ. 2022, 815, 152836. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Y.; Wan, H.; Xiao, Q.; Teng, M.; Xu, W.; Qiu, X.; Wu, X.; Wu, C. Effectiveness of Potential Strategies to Mitigate Surface Urban Heat Island: A Comprehensive Investigation Using High-Resolution Thermal Observations from an Unmanned Aerial Vehicle. Sustain. Cities Soc. 2024, 113, 105716. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Han, L. Quantifying the Nonlinear Relationship between Block Morphology and the Surrounding Thermal Environment Using Random Forest Method. Sustain. Cities Soc. 2023, 91, 104443. [Google Scholar] [CrossRef]
- Johansson Lannge, E. Does the Removal of Correlated Variables Affect the Classification Accuracy of Machine Learning Algorithms? Bachelor’s Thesis, Uppsala University, Uppsala, Sweden, 2021. [Google Scholar]
- Bjerre, E.; Fienen, M.N.; Schneider, R.; Koch, J.; Højberg, A.L. Assessing Spatial Transferability of a Random Forest Metamodel for Predicting Drainage Fraction. J. Hydrol. 2022, 612, 128177. [Google Scholar] [CrossRef]
- Kun, J.; Yunjun, Y.; Xiangqin, W.; Shuai, G.; Bo, J.; Xiang, Z. A Review on Fractional Vegetation Cover Estimation Using Remote Sensing. Adv. Earth Sci. 2013, 28, 774. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Kong, F.; Nakagoshi, N. Spatial-Temporal Gradient Analysis of Urban Green Spaces in Jinan, China. Landsc. Urban Plan. 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Wang, M.; Xu, H. The impact of building height on urban thermal environment in summer: A case study of Chinese megacities. PLoS ONE 2021, 16, e0247786. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Liang, S.; Zhou, T.; Du, X.; Xu, P.; Wu, D. Assessing the Thermal Contributions of Urban Land Cover Types. Landsc. Urban Plan. 2020, 204, 103927. [Google Scholar] [CrossRef]
- Li, Y.; Wang, N.; Tong, Z.; Liu, Y.; An, R.; Liu, Y. The Nonlinear Influence of Street Quality on Housing Prices Based on Random Forest Model: A Case Study of Guangzhou. Trop. Geogr. 2023, 43, 1547–1562. [Google Scholar] [CrossRef]
- Lin, J.; Lu, S.; He, X.; Wang, F. Analyzing the Impact of Three-Dimensional Building Structure on CO2 Emissions Based on Random Forest Regression. Energy 2021, 236, 121502. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.; Zhou, Y. A Review of Convolutional Neural Network Architectures and Their Optimizations. Artif. Intell. Rev. 2023, 56, 1905–1969. [Google Scholar] [CrossRef]
- Li, Z.; Hu, D. Exploring the Relationship between the 2D/3D Architectural Morphology and Urban Land Surface Temperature Based on a Boosted Regression Tree: A Case Study of Beijing, China. Sustain. Cities Soc. 2022, 78, 103392. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, J.; He, C. A Hierarchical Analysis of the Relationship between Urban Impervious Surfaces and Land Surface Temperatures: Spatial Scale Dependence, Temporal Variations, and Bioclimatic Modulation. Landsc. Ecol. 2016, 31, 1139–1153. [Google Scholar] [CrossRef]
- Ma, W.; Yu, Z.; Yang, W.; Zhang, Y.; Hu, Y.; Hu, J.; Zhang, H.; Yang, G. Optimizing Vegetation and Building Configurations for Streetscape Heat Mitigation: A multiscale Analysis under Extreme Heat. Build. Environ. 2025, 283, 113331. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Y.; Zhang, Z.; Xiao, R. Influences of Buildings on Urban Heat Island Based on 3D Landscape Metrics: An Investigation of China’s 30 Megacities at Micro Grid-Cell Scale and Macro City Scale. Landsc. Ecol 2021, 36, 2743–2762. [Google Scholar] [CrossRef]
- Guo, F.; Schlink, U.; Wu, W.; Hu, D.; Sun, J. Scale-dependent and season-dependent impacts of 2D/3D building morphology on land surface temperature. Sustain. Cities Soc. 2023, 97, 104788. [Google Scholar] [CrossRef]
- Wan, Y.; Du, H.; Yuan, L.; Xu, X.; Tang, H.; Zhang, J. Exploring the Influence of Block Environmental Characteristics on Land Surface Temperature and Its Spatial Heterogeneity for a High-Density City. Sustain. Cities Soc. 2025, 118, 105973. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial Analysis of Surface Urban Heat Islands in Four Rapidly Growing African Cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. Estimating the Seasonal Relationship between Land Surface Temperature and Normalized Difference Bareness Index Using Landsat Data Series. Int. J. Eng. Geosci. 2022, 7, 9–16. [Google Scholar] [CrossRef]
- Xie, Q.; Ren, L.; Yang, C. Regulation of Water Bodies to Urban Thermal Environment: Evidence from Wuhan, China. Front. Ecol. Evol. 2023, 11, 983567. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a Mitigation and Adaptation Strategy to Urban Heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Wei, J.; Li, H.; Wang, Y.; Xu, X. The Cooling and Humidifying Effects and the Thresholds of Plant Community Structure Parameters in Urban Aggregated Green Infrastructure. Forests 2021, 12, 111. [Google Scholar] [CrossRef]
- Sun, X.; Tan, X.; Chen, K.; Song, S.; Zhu, X.; Hou, D. Quantifying Landscape-Metrics Impacts on Urban Green-Spaces and Water-Bodies Cooling Effect: The Study of Nanjing, China. Urban For. Urban Green. 2020, 55, 126838. [Google Scholar] [CrossRef]
- Asyraf, M.S.; Damayanti, A.; Dimyati, M. The Effect of Building Density on Land Surface Temperature, (Case Study: Turikale District, Maros Regency). IOP Conf. Ser. Earth Environ. Sci. 2020, 500, 012061. [Google Scholar]
- Cao, Z.; Wu, Z.; Liu, L.; Chen, Y.; Zou, Y. Assessing the Relationship between Anthropogenic Heat Release Warming and Building Characteristics in Guangzhou: A Sustainable Development Perspective. Sci. Total Environ. 2019, 695, 133759. [Google Scholar] [CrossRef]
- Danniswari, D.; Honjo, T.; Furuya, K. Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM. Geographies 2022, 2, 563–576. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.; Zhang, L.J.; Yuan, L. Ventilation Assessment on Urban-Block Detailed Planning Based on Numerical Simulation. Acta Sci. Circumst 2012, 32, 946–953. [Google Scholar]
- Li, J.; Wang, H.; Cai, X.; Liu, S.; Lai, W.; Chang, Y.; Qi, J.; Zhu, G.; Zhang, C.; Liu, Y. Quantifying Urban Spatial Morphology Indicators on the Green Areas Cooling Effect: The Case of Changsha, China, a Subtropical City. Land 2024, 13, 757. [Google Scholar] [CrossRef]
Index Category | Spatial Morphology Index | Formula | Description |
---|---|---|---|
Two-Dimensional Spatial Morphology Indices | Patch area (PLAND) | Total area of each of the four patch types within each grid cell. | |
Largest Patch Index (LPI) | denotes the area of patch of class-, and denotes the total area of the moving window . The LPI indicates the intensity of disturbance from human activities. | ||
Landscape Shannon Diversity Index (SHDILA) | is the ratio of the total area of class- patches to the total area of the moving window. The index describes the landscape diversity of the region. | ||
Normalized Difference Vegetation Index (NDVI) | and denote the reflectance values in the near-infrared and red bands, respectively. The represents the Normalized Difference Vegetation Index. | ||
Three-Dimensional Spatial Morphology Indices | Building Diversity Index (SHDIAR) | is the ratio of the total area of class- buildings to the total area of the moving window. The index quantifies the building diversity of the region. | |
Building Density (BD) | denotes the total land area of the study region; denotes the total number of buildings within that region. The is defined as the ratio of the number of buildings to the total land area of the region. | ||
Building Coverage Ratio (BCR) | represents the footprint area of building within the study region. The is defined as the ratio of the total building footprint area to the total land area of the region. | ||
Mean Building Height (MBH) | denotes the height of building within the study region. | ||
Standard Deviation of Building Height (BHSD) | The reflects the dispersion and variability of building heights within the region. | ||
Building Crowding Degree (BCD) | denotes the volume of building within the region. The is the percentage of the total volume of all buildings in the region relative to the city’s overall building volume. | ||
Standard Deviation of Building Volume (SDBV) | The reflects the dispersion and variability of building volumes within the region. | ||
Floor-Area Ratio (FAR) | denotes the number of storeys of building . The indirectly reflects the residential density of the region. | ||
Building Shape Coefficient (BSC) | denotes the perimeter of building . The is one of the factors that determines urban heat loss and gain. |
Temperature Level | Formulas | LST Range(°C) | Attribute Description |
---|---|---|---|
Low-temperature zone | 42.30 | Cold island zone | |
Sub-medium-temperature zone | 42.3043.74 | Transition zone | |
Medium-temperature zone | 43.7446.62 | ||
Sub-high-temperature zone | 46.6248.06 | Heat island zone | |
High-temperature zone | 48.06 |
Metrics | Scales | ||||
---|---|---|---|---|---|
150 m | 300 m | 600 m | 900 m | 1200 m | |
RMSE | 0.0547 | 0.0506 | 0.0499 | 0.0519 | 0.0509 |
R2 | 0.7666 | 0.7990 | 0.8114 | 0.7782 | 0.7556 |
MAE | 0.0421 | 0.0393 | 0.0386 | 0.0410 | 0.0402 |
Var explained | 75.49 | 80.00 | 81.40 | 81.16 | 77.97 |
Mean of squared residuals | 0.0031 | 0.0027 | 0.0025 | 0.0026 | 0.0036 |
Variable Categories | Impact Factors | Scales | ||||
---|---|---|---|---|---|---|
150 m | 300 m | 600 m | 900 m | 1200 m | ||
Two-dimensional spatial morphological indices | PLAND_IS | 38.97 (7) | 30.34 (6) | 38.35 (1) | 22.62 (1) | 22.89 (1) |
PLAND_BL | 63.15 (2) | 34.17 (4) | 22.01 (4) | 16.13 (3) | 9.39 (6) | |
PLAND_WS | 62.85 (3) | 35.61 (3) | 20.76 (5) | 12.86 (5) | 18.27 (3) | |
LPI | 35.45 (9) | 22.54 (13) | 16.01 (10) | 7.68 (10) | 7.02 (8) | |
SHDILA | 41.91 (6) | 25.83 (9) | 17.24 (9) | 8.06 (8) | 5.25 (11) | |
33.48 (12) | 27.38 (8) | 17.26 (8) | 18.60 (2) | 19.43 (2) | ||
Three-dimensional spatial morphological indices | SHDIAR | 30.11 (13) | 25.2 (10) | 13.73 (12) | 5.57 (12) | 5.19 (12) |
BD | 54.96 (5) | 36.39 (2) | 18.1 (6) | 10.11 (7) | 8.52 (7) | |
BCR | 36.29 (8) | 25.01 (11) | 22.88 (3) | 12.53 (6) | 11.09 (5) | |
MBH | 69.61 (1) | 34.16 (5) | 17.36 (7) | 8.06 (9) | 4.31 (13) | |
BHSD | 61.63 (4) | 42.13 (1) | 27.01 (2) | 14.83 (4) | 14.43 (4) | |
BCD | 30.03 (14) | 21.52 (14) | 14.06 (11) | 4.64 (13) | 3.33 (14) | |
SDBV | 35.02 (10) | 29.75 (7) | 13.32 (13) | 6.73 (11) | 5.8 (10) | |
BSC | 34.75 (11) | 22.79 (12) | 11.16 (14) | 3.28 (14) | 6.27 (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, R.; Wang, J.; Liu, D. Assessing the Impact of Urban Spatial Form on Land Surface Temperature Using Random Forest—Taking Beijing as a Case Study. Land 2025, 14, 1639. https://doi.org/10.3390/land14081639
He R, Wang J, Liu D. Assessing the Impact of Urban Spatial Form on Land Surface Temperature Using Random Forest—Taking Beijing as a Case Study. Land. 2025; 14(8):1639. https://doi.org/10.3390/land14081639
Chicago/Turabian StyleHe, Ruizi, Jiahui Wang, and Dongyun Liu. 2025. "Assessing the Impact of Urban Spatial Form on Land Surface Temperature Using Random Forest—Taking Beijing as a Case Study" Land 14, no. 8: 1639. https://doi.org/10.3390/land14081639
APA StyleHe, R., Wang, J., & Liu, D. (2025). Assessing the Impact of Urban Spatial Form on Land Surface Temperature Using Random Forest—Taking Beijing as a Case Study. Land, 14(8), 1639. https://doi.org/10.3390/land14081639