Effects of 2D/3D Urban Morphology on Cooling Effect Diffusion of Urban Rivers in Summer: A Case Study of Huangpu River in Shanghai
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Framework
2.2. Study Area
2.3. Data Source and Preprocessing
2.4. Identification of River Cooling Effect Diffusion
2.4.1. Basin Method Used for Delineating Diffusion Boundaries
2.4.2. Indicators to Control the Influences of Landscape Contexts
2.4.3. Calculation of Diffusion Resistance in River Cooling
2.5. Construction of 2D/3D Urban Morphology Indicators
2.6. K-Means Clustering of Urban Morphology
2.7. Analysis of Relative Contributions and Marginal Effects Using BRT Model
3. Results
3.1. Cooling Effect Diffusion Characteristics of the Huangpu River
3.2. Urban Morphological Characteristics Along the Huangpu River
3.3. Correlation of Indicators and Reliability of the Model
3.4. The Impact of Urban Morphology Factors on Cooling Effect Diffusion Along the Huangpu River
3.4.1. Relative Contribution of Urban Morphology Factors
3.4.2. Marginal Effects of Urban Morphology Factors
4. Discussion
4.1. Unevenness and Typical Patterns of River Cooling Effect Diffusion
4.2. Impact of Complex Urban Morphological Characteristics on River Cooling Effect Diffusion Resistance
4.3. Insights on Riverside Spatial Planning and Design from the Perspective of Cooling Effect Diffusion
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- IPCC. AR6 Synthesis Report: Climate Change 2023—IPCC 2023. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 25 November 2024).
- Thompson, V.; Mitchell, D.; Hegerl, G.C.; Collins, M.; Leach, N.J.; Slingo, J.M. The Most At-Risk Regions in the World for High-Impact Heatwaves. Nat. Commun. 2023, 14, 2152. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.A.L.; Adolphe, L.; Bonhomme, M.; Bonneaud, F.; Faraut, S.; Ginestet, S.; Michel, C.; Guyard, W. Impact of Urban Cool Island Measures on Outdoor Climate and Pedestrian Comfort: Simulations for a New District of Toulouse, France. Sustain. Cities Soc. 2016, 26, 9–26. [Google Scholar] [CrossRef]
- Verma, A.; Agrawal, S. Evaluating the Natural Cooling Potential of Waterbodies in Dense Urban Landscape: A Case Study of Bengaluru, India. Urban Clim. 2024, 58, 102200. [Google Scholar] [CrossRef]
- Cai, Z.; Guldmann, J.-M.; Tang, Y.; Han, G. Does City-Water Layout Matter? Comparing the Cooling Effects of Water Bodies across 34 Chinese Megacities. J. Environ. Manag. 2022, 324, 116263. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, S.; Liu, L.; Liu, C. Revealing the Spatiotemporal Characteristics and Drivers of the Block-Scale Thermal Environment near a Large River: Evidences from Shanghai, China. Build. Environ. 2022, 226, 109728. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, T.; Tao, X. Exploring the Spatial and Seasonal Heterogeneity of Cooling Effect of an Urban River on a Landscape Scale. Sci. Rep. 2024, 14, 8327. [Google Scholar] [CrossRef] [PubMed]
- Fricke, L.; Legg, R.; Kabisch, N. Impact of Blue Spaces on the Urban Microclimate in Different Climate Zones, Daytimes and Seasons—A Systematic Review. Urban For. Urban Green. 2024, 101, 128528. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q.; Yao, S.; Qian, J.; Gao, J.; Wu, J. How to Optimize Urban Blue Space to Maximize Its Cooling Benefits? A Case Study in Megacity of Beijing. Build. Environ. 2025, 270, 112502. [Google Scholar] [CrossRef]
- Manteghi, G.; Limit, H.B.; Remaz, D. Water Bodies an Urban Microclimate: A Review. Mod. Appl. Sci. 2015, 9, 1–12. [Google Scholar] [CrossRef]
- Völker, S.; Baumeister, H.; Claßen, T.; Hornberg, C.; Kistemann, T. Evidence for the Temperature-Mitigating Capacity of Urban Blue Space—A Health Geographic Perspective. Erdkunde 2013, 67, 355–371. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Colombo, A. The Role of Water Bodies in Climate Regulation: Insights from Recent Studies on Urban Heat Island Mitigation. Buildings 2024, 14, 2945. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, S.; Liu, C.; Feng, Y. How Do Urban Spatial Patterns Influence the River Cooling Effect? A Case Study of the Huangpu Riverfront in Shanghai, China. Sustain. Cities Soc. 2021, 69, 102835. [Google Scholar] [CrossRef]
- Feng, X.; Li, M.; Zhou, Z.; Li, F.; Wang, Y. Quantifying the Cooling Effect of River and Its Surrounding Land Use on Local Land Surface Temperature: A Case Study of Bahe River in Xi’an, China. Egypt. J. Remote Sens. Space Sci. 2023, 26, 975–988. [Google Scholar] [CrossRef]
- Du, C.; Jia, W.; Chen, M.; Yan, L.; Wang, K. How Can Urban Parks Be Planned to Maximize Cooling Effect in Hot Extremes? Linking Maximum and Accumulative Perspectives. J. Environ. Manag. 2022, 317, 115346. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Yue, W.; Yang, J.; Li, M.; Zhang, Z.; Xie, P.; Zhang, M.; Lu, Y.; He, T. Quantifying the Cooling Effect and Benefits of Urban Parks: A Case Study of Hangzhou, China. Sustain. Cities Soc. 2024, 113, 105706. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Lee, D.K.; Asawa, T.; Murakami, A.; Kim, H.G.; Lee, M.K.; Lee, H.S. Influence of Urban Form on the Cooling Effect of a Small Urban River. Landsc. Urban Plan. 2019, 183, 26–35. [Google Scholar] [CrossRef]
- Lin, W.; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating Cooling Extents of Green Parks Using Remote Sensing: Method and Test. Landsc. Urban Plan. 2015, 134, 66–75. [Google Scholar] [CrossRef]
- Cai, Z.; Han, G.; Chen, M. Do Water Bodies Play an Important Role in the Relationship between Urban Form and Land Surface Temperature? Sustain. Cities Soc. 2018, 39, 487–498. [Google Scholar] [CrossRef]
- Guo, F.; Xu, S.; Zhao, J.; Zhang, H.; Liu, L.; Zhang, Z.; Yin, X. Study on the Mechanism of Urban Morphology on River Cooling Effect in Severe Cold Regions. Front. Public Health 2023, 11, 1170627. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, L.; Zheng, H.; Yang, X. Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design. Land 2025, 14, 1393. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of Urban Heat Island Based on the Relationship between Land Surface Temperature and Land Use/ Land Cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of Urban Form and Design on Mid-Afternoon Microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Han, D.; Xu, X.; Qiao, Z.; Wang, F.; Cai, H.; An, H.; Jia, K.; Liu, Y.; Sun, Z.; Wang, S.; et al. The Roles of Surrounding 2D/3D Landscapes in Park Cooling Effect: Analysis from Extreme Hot and Normal Weather Perspectives. Build. Environ. 2023, 231, 110053. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Hu, F.; Wei, C. Effects of 2D/3D Urban Morphology on Land Surface Temperature: Contribution, Response, and Interaction. Urban Clim. 2024, 53, 101791. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical Review on the Cooling Effect of Urban Blue-Green Space: A Threshold-Size Perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Jang, G.; Kim, S.; Lee, J.S. Planning Scenarios and Microclimatic Effects: The Case of High-Density Riverside Residential Districts in Seoul, South Korea. Build. Environ. 2022, 223, 109517. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Y.; Zhou, X.; An, J.; Yan, D. Numerical Study on the Coupling Effect of River Attributes and Riverside Building Forms on the Urban Microclimate: A Case Study in Nanjing, China. Sustain. Cities Soc. 2024, 107, 105459. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Liu, W.; Tan, Z.; Hu, S.; Ao, Z.; Li, J.; Xing, H. Exploring the Seasonal Effects of Urban Morphology on Land Surface Temperature in Urban Functional Zones. Sustain. Cities Soc. 2024, 103, 105268. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.; Xuan, L.; Yan, Z.; Wang, C.; Du, C.; Su, Y.; Duan, J.; Yu, K. How to Plan Urban Parks and the Surrounding Buildings to Maximize the Cooling Effect: A Case Study in Xi’an, China. Land 2023, 13, 1117. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Wen, D.; Wu, L. How Urban Parks and Their Surrounding Buildings Affect Seasonal Land Surface Temperature: A Case Study in Beijing, China. Urban For. Urban Green. 2023, 87, 128047. [Google Scholar] [CrossRef]
- Qiu, K.; Jia, B. The Roles of Landscape Both inside the Park and the Surroundings in Park Cooling Effect. Sustain. Cities Soc. 2020, 52, 101864. [Google Scholar] [CrossRef]
- Zhou, T.; Jia, W.; Yan, L.; Hong, B.; Wang, K. Urban Park’s Vertical Canopy Structure and Its Varied Cooling Effect under Continuous Warming Climate. Urban Clim. 2024, 53, 101819. [Google Scholar] [CrossRef]
- Han, D.; An, H.; Cai, H.; Wang, F.; Xu, X.; Qiao, Z.; Jia, K.; Sun, Z.; An, Y. How Do 2D/3D Urban Landscapes Impact Diurnal Land Surface Temperature: Insights from Block Scale and Machine Learning Algorithms. Sustain. Cities Soc. 2023, 99, 104933. [Google Scholar] [CrossRef]
- Bernard, J.; Rodler, A.; Morille, B.; Zhang, X. How to Design a Park and Its Surrounding Urban Morphology to Optimize the Spreading of Cool Air? Climate 2018, 6, 10. [Google Scholar] [CrossRef]
- Tan, J.; Kuang, W.; Yu, D.; Zhou, W.; Li, X.; Liu, Q.; He, L. Investigating the Cooling Effects of Land Cover and Landscape Patterns Surrounding Rivers: Insights from the Subtropical City of Changsha, China. Urban Clim. 2024, 55, 101975. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, R.; Ma, Q.; He, T.; Fang, X.; Xiao, L.; Hu, Y.; Li, J.; Shao, L.; Gao, J. Spatio-Temporal Patterns and Population Exposure Risks of Urban Heat Island in Megacity Shanghai, China. Sustain. Cities Soc. 2024, 108, 105500. [Google Scholar] [CrossRef]
- Shanghai Municipal Statistics Bureau. Resident Population and Urbanization Rate of Shanghai, 2010–2020. Available online: https://tjj.sh.gov.cn/ysqzzdgk/20220926/650792e3930346b193fb16077187acbd.html (accessed on 21 December 2024).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Song, J.; Zhong, Q.; Myint, S.W.; Zeng, P.; Che, Y. Cooling Wisdom of ‘Water Towns’: How Urban River Networks Can Shape City Climate? Remote Sens. Environ. 2024, 300, 113925. [Google Scholar] [CrossRef]
- Shanghai Municipal Planning and Natural Resources Bureau. The Development and Construction Plan of the Huangpu River Coast (2018–2035). Available online: https://ghzyj.sh.gov.cn/ghjh/20200820/8068daedd94846b29e22208a131d52fc.html (accessed on 21 December 2024).
- Huang, J.; Wang, Y. Research on Social Service Effectiveness Evaluation for Urban Blue Spaces—A Case Study of the Huangpu River Core Section in Shanghai. Land 2023, 12, 1424. [Google Scholar] [CrossRef]
- Zhao, Z.; Gan, H.; Qian, X.; Leng, J.; Wang, Y.; Wu, P. Riverside Greenway in Urban Environment: Residents’ Perception and Use of Greenways along the Huangpu River in Shanghai, China. Int. J. Environ. Res. Public Health 2021, 18, 1120. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zheng, B.; Bedra, K.B.; Ouyang, Q.; Liu, J.; Zheng, J. Spatial and Seasonal Differences between near Surface Air Temperature and Land Surface Temperature for Urban Heat Island Effect Assessment. Urban Clim. 2023, 52, 101745. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of Land Surface Temperature–Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhang, H.; Xue, B.; Li, W. Urban Morphology in China: Dataset Development and Spatial Pattern Characterization. Sustain. Cities Soc. 2021, 71, 102981. [Google Scholar] [CrossRef]
- Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Understanding Land Surface Temperature Impact Factors Based on Local Climate Zones. Sustain. Cities Soc. 2021, 69, 102818. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Dang, X.; Sun, D.; Hu, F.; Mu, H. Separate and Combined Effects of 3D Building Features and Urban Green Space on Land Surface Temperature. J. Environ. Manag. 2021, 295, 113116. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.; Xiao, H.; Wang, Y. The Cooling Effects of Hybrid Landscapes at the District Scale in Mega-Cities: A Case Study of Shanghai. J. Clean. Prod. 2022, 366, 132942. [Google Scholar] [CrossRef]
- Beele, E.; Aerts, R.; Reyniers, M.; Somers, B. Spatial Configuration of Green Space Matters: Associations between Urban Land Cover and Air Temperature. Landsc. Urban Plan. 2024, 249, 105121. [Google Scholar] [CrossRef]
- Joshi, R.; Raval, H.; Pathak, M.; Prajapati, S.; Patel, A.; Singh, V.; Kalubarme, M.H. Urban Heat Island Characterization and Isotherm Mapping Using Geo-Informatics Technology in Ahmedabad City, Gujarat State, India. Int. J. Geosci. 2015, 6, 274–285. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gen. Tech. Rep. PNW-GTR-351; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; 122p. [Google Scholar] [CrossRef]
- He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An Aggregation Index (AI) to Quantify Spatial Patterns of Landscapes. Landsc. Ecol. 2000, 15, 591–601. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.E. Spatial Variability of Frontal Area Index and Its Relationship with Urban Heat Island Intensity. Int. J. Remote Sens. 2013, 34, 885–896. [Google Scholar] [CrossRef]
- Zhu, S.; Yan, Y.; Zhao, B.; Wang, H. Assessing the Impact of Adjacent Urban Morphology on Street Temperature: A Multisource Analysis Using Random Forest and SHAP. Build. Environ. 2025, 267, 112326. [Google Scholar] [CrossRef]
- Muhammad, F.; Xie, C.; Vogel, J.; Afshari, A. Inference of Local Climate Zones from GIS Data, and Comparison to WUDAPT Classification and Custom-Fit Clusters. Land 2022, 11, 747. [Google Scholar] [CrossRef]
- Zawadzka, J.E.; Harris, J.A.; Corstanje, R. A Simple Method for Determination of Fine Resolution Urban Form Patterns with Distinct Thermal Properties Using Class-Level Landscape Metrics. Landsc. Ecol. 2021, 36, 1863–1876. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y. Cooling Intensity of Hybrid Landscapes in a Metropolitan Area: Relative Contribution and Marginal Effect. Sustain. Cities Soc. 2022, 79, 103725. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Shi, T.; Wang, H. Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis. Int. J. Environ. Res. Public Health 2021, 18, 11404. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J. Boosted Regression Trees for Ecological Modeling. 2011. Available online: https://www.researchgate.net/publication/265181689_Boosted_Regression_Trees_for_Ecological_Modeling (accessed on 28 November 2024).
- Wang, Y.; Sheng, S.; Xiao, H. The Cooling Effect of Hybrid Land-Use Patterns and Their Marginal Effects at the Neighborhood Scale. Urban For. Urban Green. 2021, 59, 127015. [Google Scholar] [CrossRef]
- Yang, F.; Yousefpour, R.; Zhang, Y.; Wang, H. The Assessment of Cooling Capacity of Blue-Green Spaces in Rapidly Developing Cities: A Case Study of Tianjin’s Central Urban Area. Sustain. Cities Soc. 2023, 99, 104918. [Google Scholar] [CrossRef]
- Sun, F.; Mejia, A.; Che, Y. Disentangling the Contributions of Climate and Basin Characteristics to Water Yield Across Spatial and Temporal Scales in the Yangtze River Basin: A Combined Hydrological Model and Boosted Regression Approach. Water Resour. Manag. 2019, 33, 3449–3468. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Shi, X.; Liu, S. Impacts of Building Features on the Cooling Effect of Vegetation in Community-Based MicroClimate: Recognition, Measurement and Simulation from a Case Study of Beijing. Int. J. Environ. Res. Public Health 2020, 17, 8915. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xu, H. The Impact of Building Height on Urban Thermal Environment in Summer: A Case Study of Chinese Megacities. PLoS ONE 2021, 16, e0247786. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cai, H.; Qiao, Z.; Wang, L.; Jin, C.; Ge, Y.; Wang, L.; Xu, F. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images. Chin. Geogr. Sci. 2017, 27, 818–826. [Google Scholar] [CrossRef]
- Xue, S.; Yuan, L.; Wang, K.; Wang, J.; Pei, Y. Comparing the Impact of Urban Park Landscape Design Parameters on the Thermal Environment of Surrounding Low-Rise and High-Rise Neighborhoods. Forests 2008, 14, 1682. [Google Scholar] [CrossRef]
- Sheng, S.; Wang, Y. Configuration Characteristics of Green-Blue Spaces for Efficient Cooling in Urban Environments. Sustain. Cities Soc. 2024, 100, 105040. [Google Scholar] [CrossRef]
Class | Indicator | Description | Formula |
---|---|---|---|
3D architectural features | building density (BD) | The proportion of building floor space to the total area of the unit | |
average building height (BH) | The average building height within the unit range | ||
main direction of building (BMD) | The sinusoidal value of the average angle of the building in the unit relative to the riverbank | ||
building river-facing index (BRFI) | The proportion of the area of the building projected to the riverbank in the unit area indicates the permeability of the unit toward the river | ||
2D landscape features | blue-green space ratio (BGR) | The proportion of the sum of the blue-green space patches to the total area of the unit | |
landscape shape index of blue-green space (LSI) | The average value of the landscape shape index of the blue-green space represents the complexity of the landscape shape | ||
aggregation index of blue-green space (AI) | The number of similar adjacencies divided by the theoretical maximum possible number of similar adjacencies of patch type I, multiplied by 100, indicates the degree of clustering of the landscape |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sheng, S.; Huang, J.; Wang, Y. Effects of 2D/3D Urban Morphology on Cooling Effect Diffusion of Urban Rivers in Summer: A Case Study of Huangpu River in Shanghai. Land 2025, 14, 1498. https://doi.org/10.3390/land14071498
Wang Y, Sheng S, Huang J, Wang Y. Effects of 2D/3D Urban Morphology on Cooling Effect Diffusion of Urban Rivers in Summer: A Case Study of Huangpu River in Shanghai. Land. 2025; 14(7):1498. https://doi.org/10.3390/land14071498
Chicago/Turabian StyleWang, Yuhui, Shuo Sheng, Junda Huang, and Yuncai Wang. 2025. "Effects of 2D/3D Urban Morphology on Cooling Effect Diffusion of Urban Rivers in Summer: A Case Study of Huangpu River in Shanghai" Land 14, no. 7: 1498. https://doi.org/10.3390/land14071498
APA StyleWang, Y., Sheng, S., Huang, J., & Wang, Y. (2025). Effects of 2D/3D Urban Morphology on Cooling Effect Diffusion of Urban Rivers in Summer: A Case Study of Huangpu River in Shanghai. Land, 14(7), 1498. https://doi.org/10.3390/land14071498