Suitability Assessment of Pastoral Human Settlements in Xilingol League Based on an Optimized MaxEnt Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Parameter Optimization
2.3.2. Suitability Evaluation
2.3.3. Dynamic Intensity Change and Future Suitability Prediction
3. Results
3.1. Environmental Factors and Model Optimization Results
3.2. Spatiotemporal Variation of Human Settlement Suitability
3.2.1. Influence of Environmental Factors
3.2.2. Spatiotemporal Variation of Human Settlement Suitability Zones
3.3. Prediction of Future Human Settlement Suitability Zones
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Guo, J.; Liu, C.; Peng, Y.; Tang, Y. Research Status, Hotspots, and Trend Analysis of the Rural Living Environment Upgrade in China from 1992 to 2022: A Bibliometric and Narrative Review Analysis. Sustainability 2023, 15, 10508. [Google Scholar] [CrossRef]
- Liang, L.; Chen, M.; Lu, D. Revisiting the relationship between urbanization and economic development in China since the reform and opening-up. Chin. Geogr. Sci. 2022, 32, 1–15. [Google Scholar] [CrossRef]
- Huang, Q.; Song, W.; Song, C. Consolidating the Layout of Rural Settlements Using System Dynamics and the Multi-Agent System. J. Clean. Prod. 2020, 274, 123150. [Google Scholar] [CrossRef]
- Wang, S.; Bai, X.; Zhang, X.; Reis, S.; Chen, D.; Xu, J.; Gu, B. Urbanization Can Benefit Agricultural Production with Large-Scale Farming in China. Nat. Food 2021, 2, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ye, Q.; Li, J.; Kong, X.; Jiao, L. Suitability evaluation of rural settlements based on accessibility of production and living: A case study of Tingzu Town in Hubei province of China. Chin. Geogr. Sci. 2016, 26, 550–565. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, S.; Zhang, C.; Yang, M.; Jiang, M. A Bayesian network model for suitability evaluation of underground space development in urban areas: The case of Changsha, China. J. Clean. Prod. 2023, 418, 138135. [Google Scholar] [CrossRef]
- Zhou, C.; He, L.; He, J.; Zhang, Y.; Soh, C.K. Suitability evaluation of underground space development based on Bayesian network model: A case study considering population evacuation, excavation safety, and spatial connectivity. Expert Syst. Appl. 2025, 291, 128399. [Google Scholar] [CrossRef]
- Zhu, Z.; Peng, S.; Ma, X.; Lin, Z.; Ma, D.; Shi, S.; Gong, L.; Huang, B. Identification of potential conflicts in the production-living-ecological spaces of the Central Yunnan Urban Agglomeration from a multi-scale perspective. Ecol. Indic. 2024, 165, 112206. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, J.; Zhang, J.; Xu, Y.; Zhang, M.; Liao, X. Combining AHP with GIS in synthetic evaluation of environmental suitability for living in China’s 35 major cities. Int. J. Geogr. Inf. Sci. 2012, 26, 1603–1623. [Google Scholar] [CrossRef]
- Bojórquez-Tapia, L.A.; Díaz-Mondragón, S.; Ezcurra, E. GIS-based approach for participatory decision making and land suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 15, 129–151. [Google Scholar] [CrossRef]
- Halik, W.; Mamat, A.; Dang, J.H.; Deng, B.S.; Tiyip, T. Suitability analysis of human settlement environment within the Tarim Basin in Northwestern China. Quat. Int. 2013, 311, 175–180. [Google Scholar] [CrossRef]
- Feng, W.; Lu, H.; Xiang, M. Evaluation of the natural suitability of human settlements in the western Sichuan plateau region of China. Sci. Rep. 2025, 15, 1552. [Google Scholar] [CrossRef]
- Geng, S.; Shi, P.; Zong, N.; Zhu, W. Agricultural land suitability of production space in the Taihang Mountains, China. Chin. Geogr. Sci. 2019, 29, 1024–1038. [Google Scholar] [CrossRef]
- Dou, F.; Li, X.; Xing, H.; Yuan, F.; Ge, W. 3D geological suitability evaluation for urban underground space development-a case study of Qianjiang Newtown in Hangzhou, Eastern China. Tunn. Undergr. Space Technol. 2021, 115, 104052. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, X.; Sun, X. Assessing coastal reclamation suitability based on a fuzzy-AHP comprehensive evaluation framework: A case study of Lianyungang, China. Mar. Pollut. Bull. 2014, 89, 102–111. [Google Scholar] [CrossRef]
- Yang, J.; Lou, Z.; Tang, X.; Sun, Y. Multi-Source Data-Based Evaluation of Suitability of Land for Elderly Care and Layout Optimization: A Case Study of Changsha, China. Sustainability 2023, 15, 2034. [Google Scholar] [CrossRef]
- Xu, K.; Kong, C.; Li, J.; Zhang, L.; Wu, C. Suitability evaluation of urban construction land based on geo-environmental factors of Hangzhou, China. Comput. Geosci. 2011, 37, 992–1002. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, J.; Pan, Y.; Hu, W.; Amable, G.S. Multi-Criteria Land Use Suitability Analysis for Livestock Development Planning in Hangzhou Metropolitan Area, China. J. Clean. Prod. 2017, 161, 1011–1019. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, X.; He, H.S.; Deng, H.; Yu, D.; Zhou, L.; Wu, S. Evaluating Land-Use Suitability of an Industrial City in Northeast China. Int. J. Sustain. Dev. World Ecol. 2008, 15, 378–382. [Google Scholar] [CrossRef]
- Ye, W.; Huang, J.; Xu, P.; Yuan, J.; Zeng, L.; Zhang, Y.; Wang, Y.; Wang, S.; Xu, X.; Guo, Z.; et al. Suitability Evaluation of Underground Space Development by Considering Socio-Economic Factors—An Empirical Study from Longgang Region of China. Sustainability 2025, 17, 2788. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, J.; Kong, X.; Zeng, C. Assessing suitability of rural settlements using an improved technique for order preference by similarity to ideal solution. Chin. Geogr. Sci. 2016, 26, 638–655. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, Q.; Li, Z. Analysis of spatial characteristics and influence mechanism of human settlement suitability in traditional villages based on multi-scale geographically weighted regression model: A case study of Hunan province. Ecol. Indic. 2023, 154, 110828. [Google Scholar] [CrossRef]
- Wang, H.; Qin, F.; Xu, C.; Li, B.; Guo, L.; Wang, Z. Evaluating the Suitability of Urban Development Land with a Geodetector. Ecol. Indic. 2021, 123, 107339. [Google Scholar] [CrossRef]
- Nguyen, H.; Nguyen, T.; Hoang, N.; Bui, D.; Vu, H.; Van, T. The Application of LSE Software: A New Approach for Land Suitability Evaluation in Agriculture. Comput. Electron. Agric. 2020, 173, 105440. [Google Scholar] [CrossRef]
- Mao, R.; Xiao, J.; Ren, P. Spatiotemporal Evolution and Suitability Evaluation of Rural Settlements in the Typical Mountainous Area of the Upper Minjiang River: A Case Study of Lixian County, Sichuan Province, China. Sustainability 2025, 17, 2902. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, F.; Yang, Z. Coupling study on territory space suitability evaluation and construction land expansion simulation: A case study of Jiangxi province, China. Environ. Dev. Sustain. 2023, 25, 8279–8298. [Google Scholar] [CrossRef]
- Zhou, H.; Na, X.; Li, L.; Ning, X.; Bai, Y.; Wu, X.; Zang, S. Suitability Evaluation of the Rural Settlements in a Farming-Pastoral Ecotone Area Based on Machine Learning Maximum Entropy. Ecol. Indic. 2023, 154, 110794. [Google Scholar] [CrossRef]
- Wang, J.; Deng, C.; Wan, X. Reconsideration of the origins of the pastoral nomadic economy in the Eurasian Steppe. Sci. China-Earth Sci. 2022, 65, 2057–2067. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Q.; Tan, J.; Yue, D.; Ge, Q. Association between Forestry Ecological Engineering and Dust Weather in Inner Mongolia: A Panel Study. Phys. Chem. Earth 2018, 104, 76–83. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, G.; Zhou, L.; He, X.; Tian, Z. How Does the Three-North Shelterbelt Engineering of China Improve Its Habitat Quality? A Study of 40 Years of Change Tracking and Driving Factors. Land Degrad. Dev. 2025, 36, 408–423. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Y.; Ma, T.; Sun, L.; Yang, X.; Li, X.; Wang, A.; Wang, Z. Conservation Effectiveness Assessment of the Three Northern Protection Forest Project Area. Forests 2023, 14, 2121. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Liu, W.; Liu, Z.; Liu, H. The evolution of settlement system and the paths of rural revitalization in alpine pastoral areas of the Qinghai-Tibet plateau: A case study of Nagqu County. Ecol. Indic. 2023, 150, 110274. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, T.; Rong, L. Construction of public service facilities layout network in pastoral areas based on psychological cognition range information—A case study of inner Mongolia pastoral areas of East Wuzhumuqin Banner in Xilingol. Eur. J. Remote Sens. 2020, 53, 114–125. [Google Scholar] [CrossRef]
- Wuyun, D.; Sun, L.; Chen, Z.; Hou, A.; Crusiol, L.G.T.; Yu, L.; Chen, R.; Sun, Z. The Spatiotemporal Change of Cropland and Its Impact on Vegetation Dynamics in the Farming-Pastoral Ecotone of Northern China. Sci. Total Environ. 2022, 805, 150286. [Google Scholar] [CrossRef]
- Wu, J.; Han, P.; Yu, J.; Jarvie, S.; Zhang, Y.; Zhang, Q. Edge Grassland Provide a Stronger Thermal Buffer against Core Grassland in the Agro-Pastoral Ecotone of Inner Mongolia. Ecol. Indic. 2023, 154, 110762. [Google Scholar] [CrossRef]
- Shi, F.; Liu, S.; Sun, Y.; An, Y.; Zhao, S.; Liu, Y.; Li, M. Ecological network construction of the heterogeneous agro-pastoral areas in the upper Yellow River Basin. Agric. Ecosyst. Environ. 2020, 302, 107069. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Q. Spatial distribution and influencing factors of settlements in the farming-pastoral ecotone of Inner Mongolia, China. Ecosyst. Health Sustain. 2020, 6, 1771213. [Google Scholar] [CrossRef]
- Halvorsen, R.; Mazzoni, S.; Bryn, A.; Bakkestuen, V. Opportunities for Improved Distribution Modelling Practice via a Strict Maximum Likelihood Interpretation of MaxEnt. Ecography 2015, 38, 172–183. [Google Scholar] [CrossRef]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Maxent Is Not a Presence-Absence Method: A Comment on Thibaud et al. Methods Ecol. Evol. 2014, 5, 1192–1197. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists: Statistical Explanation of MaxEnt. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A Toolbox for Comparative Studies of Environmental Niche Models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better MAXENT models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.; Liu, X.; Yu, M. Thresholds of key disaster-inducing factors and drought simulation in the Xilinguole Grassland. Ecol. Inform. 2021, 64, 101380. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, Y.; Zhang, D.; Tang, Y. Natural environment suitability for human settlements in China based on GIS. J. Geogr. Sci. 2009, 19, 437–446. [Google Scholar] [CrossRef]
- Du, F.; Liu, Z.; Oniki, S. Factors Affecting Herdsmen’s Grassland Transfer in Inner Mongolia, China. Jpn. Agric. Res. Q. JARQ 2017, 51, 259–269. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Bai, Y.; Ning, X.; Zang, S. Spatial and Temporal Distribution of Rural Settlements and Influencing Mechanisms in Inner Mongolia, China. PLoS ONE 2022, 17, e0277558. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.-Y.; Li, X.H.; Zou, H.F. Optimizing MaxEnt model in the prediction of species distribution. Chin. J. Appl. Ecol. 2019, 30, 2116–2128. [Google Scholar] [CrossRef]
- Cheng, Z.; Tang, A.; Cai, J.; Song, T. Exploring the high-quality county-level development and governance response for farming-pastoral ecotone in China: A case study of Kulun. Agriculture 2022, 12, 2042. [Google Scholar] [CrossRef]
- Li, W.; Huntsinger, L. China’s Grassland Contract Policy and Its Impacts on Herder Ability to Benefit in Inner Mongolia: Tragic Feedbacks. Ecol. Soc. 2011, 16, 1. [Google Scholar] [CrossRef]
Type | Factor | Source | Year |
---|---|---|---|
Natural factor | DEM | https://www.gscloud.cn/ | 2024 |
Slope | |||
THI | https://earthengine.google.com/ | 2017/2023 | |
WEI | 2017/2023 | ||
Snowfall days | 2017/2024 | ||
Ecological factor | NDVI | GEE (https://earthengine.google.com/) | 2017/2024 |
DSI | 2017/2024 | ||
WESI | 2017/2024 | ||
NPP | 2017/2024 | ||
ET | 2017/2023 | ||
Social factor | GDP | Statistical Yearbook of Xilingol League | 2017/2023 |
Density of Pop | 2017/2023 | ||
Dist to river | |||
Stock capacity | Statistical Yearbook of Xilingol League | 2017/2023 | |
Dist to town | |||
Dist to school and hospital | https://map.baidu.com/ | 2017/2024 | |
Dist to temple | |||
Dist to railway and road |
Categories | Year | Area (Km2) | Percent (%) | Year | Area (Km2) | Percent (%) |
---|---|---|---|---|---|---|
Unsuitable area | 2017 | 84,501.38 | 43.88% | 2024 | 79,365.45 | 41.21% |
Suitable area | 66,825.4 | 34.70% | 69,778.3 | 36.23% | ||
More suitable area | 24,578.35 | 12.76% | 25,638.4 | 13.31% | ||
Most suitable area | 16,676.07 | 8.66% | 17,799.05 | 9.25% |
Area | Unchanged Area (Km2) | New More Suitable Area (Km2) | New Most Suitable Area (Km2) |
---|---|---|---|
Erlianhot | 84.91 | 87.40 | 0.00 |
Xilinhot | 12,478.63 | 2352.39 | 4.99 |
Abaga Banner | 24,278.13 | 3348.78 | 7.49 |
Sonid Left Banner | 27,180.23 | 6344.20 | 16.23 |
Sonid Right Banner | 18,591.84 | 7671.47 | 54.94 |
East Ujimqin County | 40,201.57 | 5533.85 | 76.17 |
West Ujimqin Banner | 17,535.51 | 5049.39 | 39.96 |
Bordered Yellow Banner | 4315.20 | 820.34 | 0.00 |
Plain And Bordered White Banner | 6226.83 | 41.20 | 0.00 |
Plain Blue Banner | 9544.39 | 686.74 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, S.; Zhen, J.; Xi, C.; Wang, L. Suitability Assessment of Pastoral Human Settlements in Xilingol League Based on an Optimized MaxEnt Model. Land 2025, 14, 2052. https://doi.org/10.3390/land14102052
Mu S, Zhen J, Xi C, Wang L. Suitability Assessment of Pastoral Human Settlements in Xilingol League Based on an Optimized MaxEnt Model. Land. 2025; 14(10):2052. https://doi.org/10.3390/land14102052
Chicago/Turabian StyleMu, Sen, Jianghong Zhen, Chun Xi, and Lei Wang. 2025. "Suitability Assessment of Pastoral Human Settlements in Xilingol League Based on an Optimized MaxEnt Model" Land 14, no. 10: 2052. https://doi.org/10.3390/land14102052
APA StyleMu, S., Zhen, J., Xi, C., & Wang, L. (2025). Suitability Assessment of Pastoral Human Settlements in Xilingol League Based on an Optimized MaxEnt Model. Land, 14(10), 2052. https://doi.org/10.3390/land14102052