Correction Factor for Mitigating the ‘One-Size-Fits-All’ Phenomenon in Assessing Low-Carbon City Performance
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Correction Factors
3.2. Calculation Model for Correction Factors
4. Empirical Studies
4.1. Executive Indicators
4.2. Assessment Results
4.2.1. Dimensional Differences between the Pre- and Post-Corrected LCCPVs
4.2.2. Overall Differences between the Original and Corrected LCCPVs
5. Discussion
5.1. Application of Correction Factors in the Assessment of Low-Carbon City Performance (LCCP)
5.2. The Effect and Significance of Correction Factor
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diffenbaugh, N.S.; Burke, M. Global warming has increased global economic inequality. Proc. Natl. Acad. Sci. USA 2019, 116, 9808–9813. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501. [Google Scholar] [CrossRef]
- Agreement, P. Paris agreement. In Proceedings of the Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session), Paris, France, 30 November–13 December 2015; p. 2017. [Google Scholar]
- Meng, Q.; Li, B.; Zheng, Y.; Zhu, H.; Xiong, Z.; Li, Y.; Li, Q. Multi-Scenario prediction analysis of carbon peak based on STIRPAT Model-Take South-to-North water diversion central route provinces and cities as an example. Land 2023, 12, 2035. [Google Scholar] [CrossRef]
- Yu, Y.T.; Zhang, N. Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China. Energy Econ. 2021, 96, 105125. [Google Scholar] [CrossRef]
- Chakravarty, S.; Chikkatur, A.; de Coninck, H.; Pacala, S.; Socolow, R.; Tavoni, M. Sharing global CO2 emission reductions among one billion high emitters. Proc. Natl. Acad. Sci. USA 2009, 106, 11884–11888. [Google Scholar] [CrossRef]
- Schreyer, F.; Luderer, G.; Rodrigues, R.; Pietzcker, R.C.; Baumstark, L.; Sugiyama, M.; Brecha, R.J.; Ueckerdt, F. Common but differentiated leadership: Strategies and challenges for carbon neutrality by 2050 across industrialized economies. Environ. Res. Lett. 2020, 15, 114016. [Google Scholar] [CrossRef]
- Du, X.Y.; Shen, L.Y.; Ren, Y.T.; Meng, C.H. A dimensional perspective-based analysis on the practice of low carbon city in China. Environ. Impact Assess. Rev. 2022, 95, 106768. [Google Scholar] [CrossRef]
- Tan, S.; Yang, J.; Yan, J.Y.; Lee, C.; Hashim, H.; Chen, B. A holistic low carbon city indicator framework for sustainable development. Appl. Energ. 2017, 185, 1919–1930. [Google Scholar] [CrossRef]
- Wang, Y.A.; Fang, X.L.; Yin, S.W.; Chen, W. Low-carbon development quality of cities in China: Evaluation and obstacle analysis. Sustain. Cities Soc. 2021, 64, 102553. [Google Scholar] [CrossRef]
- Chen, N.; Zhuang, G.Y.; Zhu, S.X.; Wang, D.; Li, J. Evaluation of Low-Carbon Development of Chinese Cities in 2018. Chin. J. Urban Environ. Stud. 2021, 9, 2150003. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.M.; Xu, Y.; Yeh, C.H.; Zhou, P.; Fang, J.X. A data-driven approach to objective evaluation of urban low carbon development performance. J. Clean. Prod. 2022, 368, 133238. [Google Scholar] [CrossRef]
- Ye, H.; Ren, Q.; Hu, X.Y.; Lin, T.; Xu, L.L.; Li, X.H.; Zhang, G.Q.; Shi, L.Y.; Pan, B. Low-carbon behavior approaches for reducing direct carbon emissions: Household energy use in a coastal city. J. Clean. Prod. 2017, 141, 128–136. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, L.Y.; Shuai, C.Y.; Jiao, L.D.; Liao, S.J.; Guo, Z.H. Key driving forces on the development of low carbon city (LCC) in China. Ecol. Indic. 2021, 124, 107379. [Google Scholar] [CrossRef]
- Price, L.; Zhou, N.; Fridley, D.; Ohshita, S.; Lu, H.Y.; Zheng, N.N.; Fino-Chen, C. Development of a low-carbon indicator system for China. Habitat Int. 2013, 37, 4–21. [Google Scholar] [CrossRef]
- Luo, K.; Chen, S.; Cui, S.X.; Liao, Y.T.; He, Y.; Zhou, C.S.; Wang, S.J. Examining the overall and heterogeneous impacts of urban spatial structure on carbon emissions: A case study of guangdong province, china. Land 2023, 12, 1806. [Google Scholar] [CrossRef]
- Jiang, H.T.; Yin, J.; Qiu, Y.H.; Zhang, B.; Ding, Y.; Xia, R.C. Industrial carbon emission efficiency of cities in the pearl river basin: Spatiotemporal dynamics and driving forces. Land 2022, 11, 1129. [Google Scholar] [CrossRef]
- Shen, L.Y.; Bao, H.J.; Yang, Y.; Yang, Z.C.; Xu, X.R.; Zhang, L.Y.; Liao, S.J.; Chen, Z.W. Dual perspective diagnosis on low carbon city performance. J. Green Build. 2023, 18, 167–184. [Google Scholar] [CrossRef]
- Zhou, N.; He, G.; Williams, C.; Fridley, D. ELITE cities: A low-carbon eco-city evaluation tool for China. Ecol. Indic. 2015, 48, 448–456. [Google Scholar] [CrossRef]
- Wang, M.Z.; Li, T.F.; Yuan, C.Y.; Tian, H.; Tian, S.M. Research on vehicle renewable energy use in cities with different carbon emission characteristics. Energy Rep. 2022, 8, 343–352. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.Y.; Zou, Y. Regional difference in low carbon development level of city and its influencing factor: Empirical study based on top 110 cities in GDP of china. Technol. Econ. 2014, 33, 68–74. [Google Scholar]
- Du, X.Y.; Shen, L.Y.; Wong, S.W.; Meng, C.H.; Cheng, G.Y.; Yao, F.Y. MBO based indicator-setting method for promoting low carbon city practice. Ecol. Indic. 2021, 128, 107828. [Google Scholar] [CrossRef]
- Zhuang, G.Y. Evaluation of the Development of Low-Carbon Cities in China; China Social Sciences Press: Beijing, China, 2020. [Google Scholar]
- Azizalrahman, H.; Hasyimi, V. Towards a generic multi-criteria evaluation model for low carbon cities. Sustain. Cities Soc. 2018, 39, 275–282. [Google Scholar] [CrossRef]
- Wu, Y.; Tam, V.; Shuai, C.Y.; Shen, L.Y.; Zhang, Y.; Liao, S.J. Decoupling China’s economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Sci. Total Environ. 2019, 656, 576–588. [Google Scholar] [CrossRef]
- Jing, S. Research on the Evolution of Civil Consumption Style and the Choice of Low Carbon Behavior; Yunnan University: Kunming, China, 2011. [Google Scholar]
- China National Standardization Management Committee. Indicators for National Forest city. 2019. Available online: https://www.gbbz.net/text/Interpret/4676cc3e93864588.html (accessed on 13 October 2023).
- Wang, J.H.; Ren, Y.T.; Shu, T.H.; Shen, L.Y.; Liao, X.; Yang, N.; He, H.M. Economic perspective-based analysis on urban infrastructures carrying capacity—A China study. Environ. Impact Assess. Rev. 2020, 83, 106381. [Google Scholar] [CrossRef]
- Shen, L.; Bao, H. Low Carbon City Performance in China (2022); Science Press: Beijing, China, 2023. [Google Scholar]
- Cheng, Z.; Kong, S. The effect of environmental regulation on green total-factor productivity in China’s industry. Environ. Impact Assess. Rev. 2022, 94, 106757. [Google Scholar] [CrossRef]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef] [PubMed]
- Department of Urban Surveys, China’s National Bureau of Statistics. China City Statistical Yearbook (2021); China Statistic Press: Beijing, China, 2021. [Google Scholar]
- Agudelo-Vera, C.M.; Mels, A.R.; Keesman, K.J.; Rijnaarts, H. Resource management as a key factor for sustainable urban planning. J. Environ. Manag. 2011, 92, 2295–2303. [Google Scholar] [CrossRef]
- Long, Y.; Gu, Y.Z.; Han, H.Y. Spatiotemporal heterogeneity of urban planning implementation effectiveness: Evidence from five urban master plans of Beijing. Landsc. Urban Plan. 2012, 108, 103–111. [Google Scholar] [CrossRef]
- Hu, W.; Fan, Y.M. City size and energy conservation: Do large cities in China consume more energy? Energy Econ. 2020, 92, 104943. [Google Scholar] [CrossRef]
- Li, F.; Wang, R.S.; Liu, X.S.; Zhang, X.L. Urban forest in China: Development patterns, influencing factors and research prospects. Int. J. Sustain. Dev. World 2005, 12, 197–204. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, Z.Y.; Li, C.; Wang, C. Factors facilitating the development of low-carbon cities: Evidence from China’s pilot cities. Heliyon 2022, 8, e11445. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment. Assessment Report on the Progress of National Low-Carbon City Pilot Work. 2023. Available online: https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202307/W020230713602785966247.pdf (accessed on 16 October 2023).
- Liu, L.Q.; Liu, C.X.; Sun, Z.Y. A survey of China’s low-carbon application practice-Opportunity goes with challenge. Renew. Sustain. Energy Rev. 2011, 15, 2895–2903. [Google Scholar] [CrossRef]
- Lou, Y.; Shen, L.; Huang, Z.; Wu, Y.; Li, H.; Li, G. Does the effort meet the challenge in promoting low-carbon city?—A perspective of global practice. Int. J. Environ. Res. Public Health 2018, 15, 1334. [Google Scholar] [CrossRef] [PubMed]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energ. Policy 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Liang, J.; Cai, Y. Spatial variation and distribution of urban energy consumptions from cities in China. Energies 2010, 4, 26–38. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Fan, J.; Ochieng, R.M. Performance of solar chimney power plant in Qinghai-Tibet Plateau. Renew. Sustain. Energy Rev. 2010, 14, 2249–2255. [Google Scholar] [CrossRef]
- Li, Y.; Lin, T.; Chiu, Y.; Chen, H.; Cen, H. The impact of media reports on energy and environmental efficiency in China: Evidence from modified dynamic DEA with undesirable outputs. Cost Eff. Resour. Alloc. 2021, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Xu, X.; Chen, M. Regional evolution features and coordinated development strategies for Northeast China. Chin. Geogr. Sci. 2006, 16, 378–382. [Google Scholar] [CrossRef]
- Hou, G.; Zou, Z.; Zhang, T.; Meng, Y. Analysis of the effect of industrial transformation of resource-based cities in Northeast China. Economies 2019, 7, 40. [Google Scholar] [CrossRef]
- Chen, H.; Liu, K.; Shi, T.; Wang, L. Coal consumption and economic growth: A Chinese city-level study. Energy Econ. 2022, 109, 105940. [Google Scholar] [CrossRef]
- General Office of Harbin Municipal People’s Government. Opinions of Harbin Municipal Party Committee and Harbin Municipal People’s Government on Accelerating the Construction of a Modern Industrial System. Available online: https://www.harbin.gov.cn/haerbin/c104546/202110/c01_87092.shtml (accessed on 21 March 2024).
- Ma, Z.; Li, C.; Zhang, J. Understanding urban shrinkage from a regional perspective: Case study of Northeast China. J. Urban Plan. Dev. 2020, 146, 5020025. [Google Scholar] [CrossRef]
- Xinhua Daily Telegraph. After the “Herbin” Phenomenon, How to “Start Again” in Northeast China. Available online: http://www.xinhuanet.com/mrdx/2024-03/09/c_1310767052.htm (accessed on 21 March 2024).
- Fan, Y.; Fang, C.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Ding, J.; Bai, Y.; Yang, X.; Gao, Z. Spatiotemporal evolution of water resource utilization and economic development in the arid region of china: A “Matching-Constraint” perspective. Sustainability 2022, 14, 8724. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, L. An integrated ecosystem service assessment in an artificial desert oasis of northwestern China. J. Land Use Sci. 2017, 12, 154–167. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, B.; Jiao, J.; Li, Y.; Wang, X. Modeling the response of ecological service value to land use change through deep learning simulation in Lanzhou, China. Sci. Total Environ. 2021, 796, 148981. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Dong, S.; Mi, W.; Li, F. Spatial-temporal change of carbon storage and sink of wetland ecosystem in arid regions, Ningxia Plain. Atmos. Environ. 2019, 204, 89–101. [Google Scholar]
Dimension | Carbon Sources | Carbon Sinks | Low-Carbon Technology (Te) | ||||||
---|---|---|---|---|---|---|---|---|---|
Process | Energy Structure (En) | Economic Development (Ec) | Production Efficiency (Ef) | Urban Population (Po) | Water (Wa) | Forest (Fo) | Green Space (GS) | ||
Plan (P) | En-P | Ec-P | Ef-P | Po-P | Wa-P | Fo-P | GS-P | Te-P | |
Do (D) | En-D | Ec-D | Ef-D | Po-D | Wa-D | Fo-D | GS-D | Te-D | |
Check (C) | En-C | Ec-C | Ef-C | Po-C | Wa-C | Fo-C | GS-C | Te-C | |
Outcome (O) | En-O | Ec-O | Ef-O | Po-O | Wa-O | Fo-O | GS-O | Te-O | |
Act (A) | En-A | Ec-A | Ef-A | Po-A | Wa-A | Fo-A | GS-A | Te-A |
Correction Factor | Endowment Characteristics | Corresponding Index (K) | Factor Type |
---|---|---|---|
Dependence on fossil fuels | Proportion of fossil energy consumption in primary energy consumption (%) (KEn) | + | |
Carbon intensity | Carbon emissions per unit of GDP (t/10,000 yuan) (KEc) | + | |
Social productivity | Total factor productivity (KEf) | − | |
Difficulty for city dwellers to transition to low-carbon lifestyle | Average schooling years (year) (KPo) | − | |
Water resource abundance | Proportion of water area in the urban administrative area (%) (KWa) | − | |
Construction difficulty of forest carbon sink | Mean annual rainfall (mm) (KFo) | − | |
Construction difficulty of green space carbon sink | Mean annual rainfall (mm) (KGS) | − | |
Development and application ability of low-carbon technology | Invention patent ownership per 10,000 people (KTe) | − |
Process | Assessment Indicators | Executive Indicators |
---|---|---|
En-P | En-P1:Plans for the development and application of non-fossil fuel energy | En-P1-1:Plan content |
En-P1-2:Authority of plans | ||
En-P1-3:Reference of plans | ||
En-P1-4:Diversity of the projects in plans | ||
En-P2:Plans for the development of energy technology | En-P2-1:Plan content | |
En-P2-2:Authority of plans | ||
En-P2-2:Reference of plans | ||
En-P2-2:Diversity of the projects in plans | ||
En-P3:Plans for the reduction of energy intensity | En-P3-1:Plan content | |
En-P3-2:Authority of plans | ||
En-P3-3:Reference of plans | ||
En-P3-4:Diversity of the projects in plans | ||
En-D | En-D1:Policy measures needed for implementing plan | En-D1-1:Perfection level of the associated policies |
En-D1-2:Availability of the associated policies for citizen | ||
En-D2:Resources needed for implementing plan | En-D2-1:Strength of fund supports | |
En-D2-2:Strength of human resource supports | ||
En-D2-3:Strength of technology supports | ||
En-C | En-C1:Policy measures needed for checking | En-C1-1:Perfection level of the associated checking policies |
En-C1-2:Practices of checking policies | ||
En-C1-3:Performance assessments of energy-relative CO2 emissions | ||
En-C2:Resources needed for checking | En-C2-1:Strength of fund supports for checking | |
En-C2-2:Strength of human resource supports for checking | ||
En-C2-3:Strength of technology supports for checking | ||
En-O | En-O1:The performance of energy production and consumption | En-O1-1:Per capita energy-relative CO2 emissions |
En-O1-2:Energy-relative CO2 emissions in per unit of GDP | ||
En-O1-3:Proportion of non-fossil energy in primary energy consumption | ||
En-O1-4:The proportion of coal burning in energy consumption of industrial enterprises above designated size | ||
En-A | En-A1:Encouragement measures for better energy consumption performance | En-A1-1:Awards for government sectors based on the performance assessments |
En-A1-2:Punitive measures for government sectors based on the performance assessments | ||
En-A2:Penalty measures for poor energy consumption performance | En-A2-1:Awards for enterprises, associations and individuals based on the performance assessments | |
En-A2-2:Punitive measures for enterprises, associations and individuals based on the performance assessments | ||
En-A3:Design for improvement measures | En-A3-1:Summaries and optimizing strategies published by government | |
En-A3-2:Summaries and optimizing strategies published by associations |
Executive Indicators | Scoring Criteria and Scoring Rules |
---|---|
En-P1-1: Plans for the development and application of non-fossil fuel energy—Plan content | Scoring criteria: Whether there are clear provisions in the city’s planning regarding the following: ① the consumption of non-fossil fuel energy; ② the proportion of non-fossil fuel energy; ③ the proportion of the power generation of non-fossil fuel energy; ④ the optimization goals of energy structure; ⑤ the spatial distribution of energy development. Scoring rules: 100—when all credit points are met; 80—when any four credit points are met; 60—when any three credit points are met; 40—when any two credit points are met; 20—when any one credit point is met; 0—when none of the credit points are met. |
En-O1-1: Per capita energy-relative CO2 emissions | This executive indicator is a negative quantitative indicator, which is calculated by using the following formula: denotes the minimum value of k for the sample of cities. |
Data | Source |
---|---|
KEn | The special energy plans or the “14th Five-Year Plan” issued by the sample cities, and government’s official website, etc. |
KEc | China city carbon dioxide emissions dataset (2020) of the China City Greenhouse Gas Working Group (CCG) |
KEf | KEf is calculated according the method proposed by Cheng and Kong [30] and Huang et al. [31]. The data for calculation are collected from the China Urban Statistical Yearbook, China Regional Statistical Yearbook and China Statistical Yearbook. |
KPo | Bulletin of the seventh National Census issued by the sample cities |
KWa | The ecological environment bulletin of the sample cities and the results of the second national wetland census |
KFo, KGS | China city Statistical Yearbook (2021) [32] |
KTe | Chinese Research Data Services platform |
City | KEn | KEc | KEf | KPo | KWa | KFo | KGS | KTe |
---|---|---|---|---|---|---|---|---|
Beijing | 10.40 | 0.37 | 0.73 | 12.64 | 2.26 | 527.10 | 527.10 | 74.14 |
Tianjin | 7.70 | 1.30 | 1.12 | 11.29 | 24.84 | 571.00 | 571.00 | 54.22 |
Shijiazhuang | 5.00 | 1.77 | 0.98 | 10.76 | 0.05 | 551.40 | 551.40 | 18.22 |
Taiyuan | 6.50 | 1.58 | 0.22 | 11.84 | 2.75 | 542.90 | 542.90 | 22.74 |
Huhhot | 11.20 | 2.71 | 0.03 | 11.30 | 1.94 | 367.20 | 367.20 | 15.86 |
Shenyang | 8.60 | 1.02 | 0.67 | 11.39 | 1.69 | 658.00 | 658.00 | 23.23 |
Dalian | 10.00 | 1.11 | 0.64 | 10.82 | 28.66 | 714.30 | 714.30 | 23.64 |
Changchun | 9.50 | 1.02 | 0.08 | 10.69 | 4.88 | 663.50 | 663.50 | 19.11 |
Harbin | 9.00 | 1.30 | 0.74 | 11.16 | 2.35 | 423.00 | 423.00 | 15.52 |
Shanghai | 18.00 | 2.46 | 0.93 | 11.81 | 1.92 | 1164.50 | 1164.50 | 55.93 |
Nanjing | 6.50 | 0.78 | 0.39 | 11.76 | 5.23 | 1090.00 | 1090.00 | 81.76 |
Hangzhou | 16.30 | 0.51 | 1.00 | 10.41 | 11.40 | 1721.00 | 1721.00 | 77.13 |
Ningbo | 20.00 | 0.73 | 0.41 | 9.42 | 6.20 | 1480.00 | 1480.00 | 64.16 |
Hefei | 6.30 | 0.56 | 0.39 | 10.80 | 10.37 | 1523.00 | 1523.00 | 43.84 |
Fuzhou | 21.60 | 0.60 | 0.88 | 10.39 | 17.38 | 1403.00 | 1403.00 | 31.26 |
Xiamen | 22.00 | 0.27 | 0.90 | 11.17 | 18.97 | 1143.20 | 1143.20 | 56.98 |
Nanchang | 13.60 | 0.50 | 0.37 | 11.01 | 17.50 | 1600.00 | 1600.00 | 28.52 |
Jinan | 2.90 | 0.81 | 0.90 | 10.97 | 2.92 | 548.70 | 548.70 | 44.29 |
Qingdao | 8.00 | 0.57 | 0.15 | 10.83 | 12.39 | 662.10 | 662.10 | 57.02 |
Zhengzhou | 11.20 | 0.53 | 0.95 | 11.76 | 7.71 | 576.00 | 576.00 | 39.82 |
Wuhan | 15.60 | 0.54 | 0.03 | 11.96 | 19.12 | 1269.00 | 1269.00 | 47.69 |
Changsha | 17.70 | 0.34 | 0.25 | 11.52 | 2.89 | 1350.00 | 1350.00 | 32.74 |
Guangzhou | 29.00 | 0.33 | 0.04 | 11.61 | 10.71 | 1623.60 | 1623.60 | 83.05 |
Shenzhen | 29.00 | 0.16 | 0.24 | 11.86 | 23.33 | 1932.00 | 1932.00 | 125.86 |
Nanning | 25.00 | 0.70 | 0.45 | 10.64 | 2.86 | 1110.70 | 1110.70 | 13.49 |
Haikou | 17.40 | 0.48 | 0.48 | 11.40 | 2.19 | 1220.00 | 1220.00 | 20.90 |
Chongqing | 25.00 | 0.75 | 0.66 | 9.80 | 2.51 | 1184.10 | 1184.10 | 17.21 |
Chengdu | 44.20 | 0.28 | 0.20 | 10.85 | 2.01 | 1229.60 | 1229.60 | 31.18 |
Guiyang | 21.10 | 0.94 | 0.32 | 10.76 | 2.00 | 1156.20 | 1156.20 | 25.99 |
Kunming | 42.00 | 0.43 | 0.82 | 11.03 | 2.97 | 850.10 | 850.10 | 21.74 |
Xi’an | 10.00 | 0.46 | 0.03 | 11.85 | 3.96 | 648.30 | 648.30 | 35.70 |
Lanzhou | 13.00 | 1.63 | 0.50 | 11.33 | 0.29 | 300.00 | 300.00 | 21.20 |
Xining | 47.00 | 2.46 | 0.87 | 10.20 | 0.08 | 500.00 | 500.00 | 13.17 |
Yinchuan | 13.70 | 6.90 | 0.32 | 11.01 | 5.90 | 182.60 | 182.60 | 15.09 |
Urumqi | 17.00 | 1.89 | 0.50 | 11.57 | 0.94 | 199.60 | 199.60 | 14.38 |
Lhasa | 45.00 | 0.68 | 0.48 | 9.55 | 3.83 | 435.00 | 435.00 | 15.75 |
City | αEn | αEc | αEf | αPo | αWa | αFo | αGS | αTe |
---|---|---|---|---|---|---|---|---|
Beijing | 1.15 | 0.85 | 1.02 | 0.98 | 1.07 | 1.06 | 1.06 | 0.84 |
Tianjin | 1.31 | 1.14 | 1.02 | 0.99 | 0.79 | 1.05 | 1.05 | 0.85 |
Shijiazhuang | 1.33 | 1.20 | 0.97 | 1.01 | 1.29 | 1.05 | 1.05 | 1.17 |
Taiyuan | 1.33 | 1.19 | 1.04 | 0.98 | 1.04 | 1.06 | 1.06 | 1.09 |
Huhhot | 1.11 | 1.20 | 1.04 | 0.99 | 1.11 | 1.10 | 1.10 | 1.19 |
Shenyang | 1.25 | 1.08 | 0.98 | 0.99 | 1.13 | 1.03 | 1.03 | 1.08 |
Dalian | 1.16 | 1.10 | 0.98 | 1.01 | 0.79 | 1.01 | 1.01 | 1.07 |
Changchun | 1.19 | 1.08 | 1.04 | 1.02 | 0.94 | 1.02 | 1.02 | 1.15 |
Harbin | 1.22 | 1.14 | 0.99 | 1.00 | 1.07 | 1.10 | 1.10 | 1.19 |
Shanghai | 0.93 | 1.20 | 1.02 | 0.98 | 1.11 | 0.94 | 0.94 | 0.84 |
Nanjing | 1.33 | 1.02 | 1.00 | 0.98 | 0.93 | 0.95 | 0.95 | 0.84 |
Hangzhou | 0.96 | 0.92 | 0.97 | 1.03 | 0.83 | 0.92 | 0.92 | 0.84 |
Ningbo | 0.90 | 1.00 | 0.98 | 1.03 | 0.91 | 0.92 | 0.92 | 0.84 |
Hefei | 1.33 | 0.94 | 0.98 | 1.01 | 0.84 | 0.92 | 0.92 | 0.90 |
Fuzhou | 0.87 | 0.96 | 0.97 | 1.03 | 0.79 | 0.92 | 0.92 | 0.99 |
Xiamen | 0.87 | 0.85 | 0.97 | 1.00 | 0.79 | 0.95 | 0.95 | 0.84 |
Nanchang | 1.03 | 0.92 | 1.00 | 1.00 | 0.79 | 0.92 | 0.92 | 1.01 |
Jinan | 1.33 | 1.03 | 0.97 | 1.00 | 1.03 | 1.06 | 1.06 | 0.90 |
Qingdao | 1.29 | 0.95 | 1.04 | 1.01 | 0.82 | 1.03 | 1.03 | 0.84 |
Zhengzhou | 1.11 | 0.93 | 0.97 | 0.98 | 0.88 | 1.05 | 1.05 | 0.92 |
Wuhan | 0.98 | 0.93 | 1.04 | 0.98 | 0.79 | 0.93 | 0.93 | 0.88 |
Changsha | 0.93 | 0.85 | 1.01 | 0.98 | 1.03 | 0.92 | 0.92 | 0.97 |
Guangzhou | 0.81 | 0.85 | 1.04 | 0.98 | 0.83 | 0.92 | 0.92 | 0.84 |
Shenzhen | 0.81 | 0.85 | 1.00 | 0.98 | 0.79 | 0.92 | 0.92 | 0.84 |
Nanning | 0.83 | 1.00 | 0.99 | 1.02 | 1.03 | 0.95 | 0.95 | 1.19 |
Haikou | 0.94 | 0.91 | 0.99 | 0.99 | 1.08 | 0.94 | 0.94 | 1.12 |
Chongqing | 0.83 | 1.01 | 1.00 | 1.03 | 1.05 | 0.94 | 0.94 | 1.19 |
Chengdu | 0.81 | 0.85 | 1.04 | 1.01 | 1.10 | 0.94 | 0.94 | 0.99 |
Guiyang | 0.88 | 1.06 | 0.98 | 1.01 | 1.10 | 0.94 | 0.94 | 1.04 |
Kunming | 0.81 | 0.88 | 1.02 | 1.00 | 1.02 | 0.99 | 0.99 | 1.10 |
Xi’an | 1.16 | 0.90 | 1.02 | 0.98 | 0.97 | 1.03 | 1.03 | 0.95 |
Lanzhou | 1.05 | 1.19 | 1.03 | 0.99 | 1.29 | 1.10 | 1.10 | 1.11 |
Xining | 0.81 | 1.20 | 1.01 | 1.03 | 1.29 | 1.07 | 1.07 | 1.19 |
Yinchuan | 1.02 | 1.20 | 1.04 | 1.00 | 0.91 | 1.10 | 1.10 | 1.19 |
Urumqi | 0.95 | 1.20 | 1.01 | 0.98 | 1.28 | 1.10 | 1.10 | 1.19 |
Lhasa | 0.81 | 0.99 | 1.00 | 1.03 | 0.98 | 1.10 | 1.10 | 1.19 |
Max | 1.33 | 1.20 | 1.04 | 1.03 | 1.29 | 1.10 | 1.10 | 1.19 |
Min | 0.81 | 0.85 | 0.97 | 0.98 | 0.79 | 0.92 | 0.92 | 0.84 |
Average | 1.04 | 1.02 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 1.01 |
Cities | En | Ec | Ef | Po | Wa | Fo | GS | Te | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | |
Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | Before/After | |
Beijing | 74.28/78.85 | 1/1 | 87.13/81.66 | 1/6 | 70.05/70.46 | 2/1 | 72.86/72.05 | 3/3 | 64.97/66.18 | 8/2 | 65.89/67.31 | 1/1 | 83.13/84.99 | 1/1 | 68.08/63.84 | 1/1 |
Tianjin | 66.32/75.27 | 4/2 | 78.67/82.71 | 14/3 | 63.40/63.87 | 4/3 | 71.20/70.97 | 4/4 | 56.39/53.76 | 18/28 | 45.57/46.03 | 15/14 | 66.08/67.10 | 20/16 | 54.72/51.65 | 7/8 |
Shijiazhuang | 47.29/54.71 | 21/10 | 76.58/81.19 | 17/7 | 47.18/46.60 | 26/26 | 52.80/53.13 | 19/19 | 47.81/50.34 | 35/34 | 40.76/41.45 | 21/20 | 65.46/66.83 | 21/17 | 43.71/47.22 | 14/11 |
Taiyuan | 50.11/57.52 | 19/8 | 71.87/76.33 | 25/18 | 40.42/41.05 | 31/31 | 55.00/54.42 | 15/18 | 56.70/57.28 | 17/17 | 25.06/25.41 | 35/34 | 66.70/67.99 | 18/14 | 28.09/29.49 | 32/33 |
Huhhot | 41.86/43.51 | 30/27 | 69.30/73.78 | 30/22 | 40.12/40.83 | 32/33 | 47.28/47.09 | 25/25 | 56.26/57.93 | 19/15 | 48.82/50.65 | 8/6 | 68.12/70.65 | 14/11 | 28.18/31.10 | 31/31 |
Shenyang | 43.18/48.20 | 26/19 | 77.11/79.44 | 15/11 | 53.77/53.30 | 17/17 | 50.42/50.16 | 23/23 | 58.29/60.50 | 15/13 | 25.79/25.94 | 34/33 | 65.36/65.93 | 22/20 | 31.94/33.29 | 29/29 |
Dalian | 50.47/54.53 | 17/11 | 68.88/71.42 | 31/28 | 57.13/56.80 | 10/10 | 40.89/41.17 | 31/30 | 70.06/64.12 | 2/5 | 47.76/48.05 | 12/10 | 75.36/75.74 | 6/5 | 36.87/37.90 | 22/19 |
Changchun | 41.32/44.92 | 31/25 | 71.52/73.62 | 27/23 | 50.97/51.82 | 21/20 | 40.45/40.83 | 33/32 | 65.75/64.17 | 7/4 | 35.58/35.88 | 27/27 | 62.18/62.73 | 25/23 | 32.12/33.81 | 28/27 |
Harbin | 42.97/47.24 | 28/20 | 74.24/78.10 | 22/14 | 49.26/49.08 | 23/23 | 38.37/38.31 | 34/34 | 62.18/63.61 | 10/6 | 33.78/35.93 | 30/26 | 55.38/57.15 | 34/34 | 30.81/33.53 | 30/28 |
Shanghai | 66.83/64.64 | 3/5 | 81.13/87.46 | 7/1 | 62.21/62.66 | 5/5 | 75.85/75.01 | 2/2 | 53.01/54.46 | 28/23 | 35.07/34.57 | 29/29 | 75.50/73.96 | 5/6 | 63.46/59.17 | 2/3 |
Nanjing | 60.59/68.70 | 5/4 | 83.11/83.68 | 4/2 | 63.59/63.57 | 3/4 | 64.71/64.11 | 9/11 | 64.01/62.37 | 9/9 | 40.56/40.10 | 23/22 | 78.95/77.46 | 3/3 | 60.92/56.51 | 3/4 |
Hangzhou | 70.76/69.46 | 2/3 | 82.48/79.94 | 5/10 | 70.57/69.70 | 1/2 | 63.65/64.37 | 11/10 | 75.26/70.33 | 1/1 | 50.09/48.34 | 7/9 | 82.46/80.35 | 2/2 | 56.73/52.54 | 6/7 |
Ningbo | 58.52/55.65 | 6/9 | 80.67/80.81 | 9/8 | 57.67/57.25 | 9/9 | 63.81/64.51 | 10/9 | 68.56/66.10 | 4/3 | 41.13/39.75 | 20/23 | 68.24/66.19 | 13/19 | 39.11/35.44 | 18/25 |
Hefei | 46.75/53.50 | 22/13 | 81.06/79.32 | 8/12 | 55.28/54.75 | 13/13 | 43.78/44.03 | 28/28 | 50.05/48.21 | 30/35 | 47.92/46.51 | 10/12 | 66.59/64.43 | 19/22 | 46.79/44.59 | 11/14 |
Fuzhou | 43.08/40.29 | 27/29 | 75.86/74.73 | 19/19 | 45.38/44.65 | 27/28 | 46.16/46.77 | 27/26 | 53.67/50.37 | 25/33 | 46.37/44.67 | 14/15 | 63.95/62.23 | 23/24 | 37.27/37.03 | 21/22 |
Xiamen | 42.45/39.35 | 29/31 | 72.35/67.73 | 24/32 | 55.29/54.51 | 12/14 | 54.78/54.71 | 18/16 | 68.63/63.13 | 3/7 | 40.33/39.32 | 24/24 | 77.40/75.83 | 4/4 | 42.83/40.10 | 16/17 |
Nanchang | 52.20/52.94 | 11/14 | 73.76/71.40 | 23/29 | 54.43/54.40 | 14/15 | 43.47/43.55 | 29/29 | 65.80/60.55 | 6/11 | 43.99/42.71 | 17/18 | 60.37/58.58 | 28/31 | 45.21/45.43 | 13/13 |
Jinan | 51.26/59.70 | 13/7 | 71.68/72.52 | 26/27 | 61.00/60.24 | 6/8 | 50.83/50.96 | 22/22 | 55.63/56.07 | 20/18 | 36.05/36.59 | 25/25 | 69.84/71.15 | 11/10 | 39.37/37.62 | 17/20 |
Qingdao | 54.51/62.83 | 7/6 | 83.90/82.33 | 3/5 | 59.92/61.00 | 7/6 | 66.98/67.26 | 7/7 | 66.30/61.68 | 5/10 | 46.64/46.98 | 13/11 | 67.81/68.44 | 15/13 | 50.68/47.28 | 9/10 |
Zhengzhou | 51.15/53.99 | 14/12 | 75.17/73.12 | 20/25 | 51.82/51.04 | 20/21 | 49.04/48.43 | 24/24 | 54.16/52.15 | 24/29 | 42.56/42.93 | 18/17 | 60.15/61.06 | 29/27 | 36.57/35.49 | 23/24 |
Wuhan | 50.55/49.97 | 16/15 | 79.78/77.83 | 11/15 | 53.79/54.84 | 16/12 | 70.37/69.65 | 6/6 | 54.47/51.03 | 23/31 | 35.67/34.75 | 26/28 | 68.99/67.35 | 12/15 | 50.33/47.65 | 10/9 |
Changsha | 50.29/48.29 | 18/17 | 70.45/65.60 | 28/33 | 53.88/54.11 | 15/16 | 54.82/54.44 | 17/17 | 59.51/60.13 | 13/14 | 47.87/46.49 | 11/13 | 60.93/59.46 | 27/30 | 46.63/46.01 | 12/12 |
Guangzhou | 53.50/48.28 | 8/18 | 79.17/73.98 | 12/21 | 59.64/60.65 | 8/7 | 70.68/70.22 | 5/5 | 57.97/54.13 | 16/26 | 45.53/44.19 | 16/16 | 74.22/71.38 | 8/9 | 34.48/32.14 | 25/30 |
Shenzhen | 51.74/46.19 | 12/23 | 76.94/72.98 | 16/26 | 48.93/48.89 | 24/24 | 78.33/77.54 | 1/1 | 60.74/57.41 | 12/16 | 22.99/22.38 | 36/36 | 74.41/72.01 | 7/7 | 57.27/53.48 | 5/6 |
Nanning | 44.18/40.10 | 23/30 | 79.09/78.95 | 13/13 | 50.40/50.24 | 22/22 | 52.44/52.79 | 20/20 | 53.44/53.90 | 26/27 | 59.11/57.65 | 3/2 | 67.72/66.44 | 16/18 | 38.01/41.43 | 19/16 |
Haikou | 43.70/42.19 | 24/28 | 66.93/64.05 | 33/34 | 43.45/43.14 | 29/29 | 38.29/38.06 | 35/35 | 58.75/60.53 | 14/12 | 50.15/48.65 | 6/8 | 66.89/65.46 | 17/21 | 27.98/29.62 | 33/32 |
Chongqing | 50.93/46.14 | 15/24 | 82.09/82.42 | 6/4 | 52.11/52.13 | 19/19 | 65.09/65.92 | 8/8 | 61.93/63.13 | 11/7 | 58.38/57.06 | 2/3 | 73.14/71.69 | 9/8 | 58.59/62.99 | 4/2 |
Chengdu | 52.97/46.26 | 9/22 | 85.90/80.73 | 2/9 | 55.43/56.54 | 11/11 | 58.82/59.10 | 13/13 | 49.74/50.89 | 33/32 | 42.44/41.18 | 19/21 | 70.10/68.55 | 10/12 | 54.45/54.12 | 8/5 |
Guiyang | 52.72/49.80 | 10/16 | 75.06/76.88 | 21/16 | 41.72/41.24 | 30/30 | 54.95/55.25 | 16/15 | 52.59/54.26 | 29/25 | 54.12/52.72 | 5/5 | 63.25/62.08 | 24/25 | 37.46/38.24 | 20/18 |
Kunming | 49.08/44.58 | 20/26 | 80.63/76.50 | 10/17 | 47.59/48.09 | 25/25 | 40.48/40.53 | 32/33 | 54.69/55.16 | 22/20 | 54.39/54.06 | 4/4 | 61.04/60.80 | 26/28 | 32.93/34.00 | 27/26 |
Xi’an | 43.24/46.52 | 25/21 | 76.01/73.20 | 18/24 | 44.96/45.38 | 28/27 | 56.80/56.17 | 14/14 | 55.19/54.65 | 21/22 | 48.39/49.02 | 9/7 | 56.82/57.40 | 32/33 | 43.10/42.18 | 15/15 |
Lanzhou | 35.69/36.42 | 35/33 | 67.09/71.04 | 32/30 | 52.53/53.16 | 18/18 | 41.32/41.10 | 30/31 | 49.67/54.34 | 34/24 | 40.60/41.79 | 22/19 | 54.51/56.24 | 35/35 | 34.41/36.03 | 26/23 |
Xining | 36.87/32.47 | 34/36 | 57.86/62.15 | 36/36 | 39.68/39.83 | 34/34 | 59.15/59.79 | 12/12 | 49.92/55.54 | 32/19 | 23.28/23.76 | 28/35 | 59.76/61.30 | 30/26 | 24.10/26.89 | 34/34 |
Yinchuan | 34.63/34.89 | 36/34 | 70.02/74.15 | 29/20 | 40.09/40.86 | 33/32 | 51.27/51.33 | 21/21 | 53.22/51.54 | 27/30 | 33.56/34.08 | 31/30 | 58.39/60.41 | 31/29 | 35.56/37.57 | 24/21 |
Urumqi | 39.49/38.71 | 32/32 | 64.81/69.59 | 34/31 | 38.97/39.15 | 35/35 | 22.91/22.58 | 36/36 | 50.03/54.75 | 31/21 | 27.22/27.91 | 33/32 | 56.26/58.29 | 33/32 | 22.72/24.85 | 35/35 |
Lhasa | 37.82/33.37 | 33/35 | 63.10/62.86 | 35/35 | 26.67/26.64 | 36/36 | 46.26/46.71 | 26/27 | 40.31/39.97 | 36/36 | 29.82/30.11 | 32/31 | 52.93/54.65 | 36/36 | 21.65/23.52 | 36/36 |
Mean Value | 49.54/50.28 | 75.32/75.39 | 51.65/51.74 | 54.29/54.25 | 57.66/57.07 | 42.04/41.80 | 66.62/66.45 | 41.48/41.22 | ||||||||
SD | 9.37/11.18 | 6.58/6.04 | 9.22/9.21 | 12.38/12.27 | 7.27/6.04 | 10.23/9.99 | 7.65/7.06 | 11.92/10.40 | ||||||||
CV | 0.19/0.22 | 0.09/0.08 | 0.18/0.18 | 0.23/0.23 | 0.13/0.11 | 0.24/0.24 | 0.11/0.11 | 0.29/0.25 |
City | Score | Rank | City | Score | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Variation | Before | After | Before | After | Variation | ||
Beijing | 73.29 | 73.17 | 1 | 1 | 0 | Wuhan | 57.97 | 56.63 | 12 | 11 | 1 |
Tianjin | 62.79 | 63.92 | 6 | 5 | 1 | Changsha | 55.56 | 54.32 | 16 | 19 | −3 |
Shijiazhuang | 52.65 | 55.18 | 22 | 16 | 6 | Guangzhou | 59.46 | 56.87 | 9 | 10 | −1 |
Taiyuan | 49.25 | 51.19 | 30 | 27 | 3 | Shenzhen | 58.9 | 56.36 | 10 | 12 | −2 |
Huhhot | 49.99 | 51.94 | 28 | 25 | 3 | Nanning | 55.58 | 55.19 | 15 | 15 | 0 |
Shenyang | 50.69 | 52.1 | 26 | 24 | 2 | Haikou | 49.52 | 48.96 | 29 | 31 | −2 |
Dalian | 55.88 | 56.22 | 14 | 13 | 1 | Chongqing | 63.33 | 62.69 | 5 | 6 | −1 |
Changchun | 50.04 | 50.97 | 27 | 28 | −1 | Chengdu | 58.72 | 57.17 | 11 | 9 | 2 |
Harbin | 48.36 | 50.37 | 31 | 29 | 2 | Guiyang | 53.94 | 53.81 | 20 | 20 | 0 |
Shanghai | 64.16 | 63.99 | 4 | 4 | 0 | Kunming | 52.61 | 51.72 | 24 | 26 | −2 |
Nanjing | 64.59 | 64.56 | 3 | 3 | 0 | Xi’an | 53.07 | 53.07 | 21 | 22 | −1 |
Hangzhou | 68.93 | 66.88 | 2 | 2 | 0 | Lanzhou | 46.97 | 48.77 | 33 | 32 | 1 |
Ningbo | 59.77 | 58.21 | 8 | 8 | 0 | Xining | 45.39 | 45.22 | 34 | 34 | 0 |
Hefei | 54.8 | 54.42 | 18 | 17 | 1 | Yinchuan | 46.99 | 48.1 | 32 | 33 | −1 |
Fuzhou | 51.48 | 50.09 | 25 | 30 | −5 | Urumqi | 40.25 | 41.98 | 35 | 35 | 0 |
Xiamen | 56.73 | 54.34 | 13 | 18 | −5 | Lhasa | 33.98 | 39.73 | 36 | 36 | 0 |
Nanchang | 54.85 | 53.7 | 17 | 21 | −4 | Mean Value | 54.72 | 54.78 | |||
Jinan | 54.49 | 55.61 | 19 | 14 | 5 | SD | 7.56 | 6.66 | |||
Qingdao | 62.15 | 62.23 | 7 | 7 | 0 | CV | 0.14 | 0.12 | |||
Zhengzhou | 52.62 | 52.28 | 23 | 23 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, S.; Shen, L.; Chen, X.; Xu, X.; Wang, Q.; Chen, Z.; Bao, H. Correction Factor for Mitigating the ‘One-Size-Fits-All’ Phenomenon in Assessing Low-Carbon City Performance. Land 2024, 13, 433. https://doi.org/10.3390/land13040433
Liao S, Shen L, Chen X, Xu X, Wang Q, Chen Z, Bao H. Correction Factor for Mitigating the ‘One-Size-Fits-All’ Phenomenon in Assessing Low-Carbon City Performance. Land. 2024; 13(4):433. https://doi.org/10.3390/land13040433
Chicago/Turabian StyleLiao, Shiju, Liyin Shen, Xi Chen, Xiangrui Xu, Qingqing Wang, Ziwei Chen, and Haijun Bao. 2024. "Correction Factor for Mitigating the ‘One-Size-Fits-All’ Phenomenon in Assessing Low-Carbon City Performance" Land 13, no. 4: 433. https://doi.org/10.3390/land13040433
APA StyleLiao, S., Shen, L., Chen, X., Xu, X., Wang, Q., Chen, Z., & Bao, H. (2024). Correction Factor for Mitigating the ‘One-Size-Fits-All’ Phenomenon in Assessing Low-Carbon City Performance. Land, 13(4), 433. https://doi.org/10.3390/land13040433