Sales Scale, Non-Pastoral Employment and Herders’ Technology Adoption: Evidence from Pastoral China
Abstract
:1. Introduction
2. Data, Descriptive Analysis, and Models
2.1. Data
2.2. Variable Definitions and Descriptive Analysis
2.3. Empirical Models
3. Results and Discussion
3.1. Livestock Sales Scale, Non-Farm Employment, and Technology Adoption
3.1.1. Livestock Sales Scale and Technology Adoption
3.1.2. Non-Pastoral Employment and Technology Adoption
3.1.3. Robustness Checks
3.2. Distinguishing Profit-Seeking Technology and Pro-Environmental Technology
3.3. Environmental Awareness, Altruism, and Technology Adoption
4. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavas, J.; Nauges, C. Uncertainty, Learning, and Technology Adoption in Agriculture. Appl. Econ. Perspect. Policy 2020, 42, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Fuglie, K.O.; Wang, S.L. Productivity Growth in Global Agriculture Shifting to Developing Countries. Choices 2012, 27, 1–7. [Google Scholar] [CrossRef]
- Schultz, T.W. Transforming Traditional Agriculture; University of Chicago Press: Chicago, IL, USA, 1983. [Google Scholar]
- Tan, S.; Li, T.; Liu, B.; Huntsinger, L. How Can Sedentarised Pastoralists Be More Technically Efficient? A Case from Eastern Inner Mongolia. Rangeland. J. 2018, 40, 241–249. [Google Scholar] [CrossRef]
- Zhang, R.; Tan, S.; Hannaway, D.; Dai, W. Multi-Household Grassland Management Pattern Promotes Ecological Efficiency of Livestock Production. Ecol. Econ. 2020, 171, 106618. [Google Scholar] [CrossRef]
- Fang, J.; Jing, H.; Zhang, W.; Gao, S.; Duan, Z.; Wang, H.; Jin, Z.; Pan, Q.; Kai, Z.; Bai, W. The Concept of “Grass-Based Livestock Husbandry” and Its Practice in Hulun Buir, Inner Mongolia. Chin. Sci. Bull. 2018, 63, 1619–1631. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Bai, Y.; Deng, X.; Chen, J.; Hou, J.; Li, Z. Changes in Livestock Grazing Efficiency Incorporating Grassland Productivity: The Case of Hulun Buir, China. Land 2020, 9, 447. [Google Scholar] [CrossRef]
- Rae, A. China’s Agriculture, Smallholders and Trade: Driven by the Livestock Revolution? Aust. J. Agric. Resour. Econ. 2008, 52, 283–302. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Squires, V.R. Managing China’s Pastoral Lands: Current Problems and Future Prospects. Land Use Policy 2015, 43, 129–137. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, X.; Qiao, W.; Peng, C. Measuring Agricultural Total Factor Productivity in China: Pattern and Drivers over the Period of 1978–2016. Aust. J. Agric. Resour. Econ. 2020, 64, 82–103. [Google Scholar] [CrossRef]
- Xia, F.; Hou, L.; Jin, S.; Li, D. Land Size and Productivity in the Livestock Sector: Evidence from Pastoral Areas in China. Aust. Aust. J. Agric. Resour. Econ. 2020, 64, 867–888. [Google Scholar] [CrossRef]
- Birhanu, M.Y.; Girma, A.; Puskur, R. Determinants of Success and Intensity of Livestock Feed Technologies Use in Ethiopia: Evidence from a Positive Deviance Perspective. Technol. Forecast. Soc. Chang. 2017, 115, 15–25. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Zhang, Y.; Wang, C.; Liu, Y. Does Climate Adaptation of Vulnerable Households to Extreme Events Benefit Livestock Production? J. Clean. Prod. 2019, 210, 358–365. [Google Scholar] [CrossRef]
- Omotilewa, O.J.; Ricker-Gilbert, J.; Ainembabazi, J.H. Subsidies for Agricultural Technology Adoption: Evidence from a Randomized Experiment with Improved Grain Storage Bags in Uganda. Am. J. Agric. Econ. 2019, 101, 753–772. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, K.; Zhou, L.; Ying, R. Mutual Proximity and Heterogeneity in Peer Effects of Farmers’ Technology Adoption: Evidence from China’s Soil Testing and Formulated Fertilization Program. China Agric. Econ. Rev. 2022, 14, 395–415. [Google Scholar] [CrossRef]
- Stark, O.; Bloom, D.E. The New Economics of Labor Migration. Am. Econ. Rev. 1985, 75, 173–178. [Google Scholar] [CrossRef]
- Taylor, J.E.; Yunez-Naude, A. The Returns from Schooling in a Diversified Rural Economy. Am. J. Agric. Econ. 2000, 82, 287–297. [Google Scholar] [CrossRef]
- Zhou, J.; Zhong, H.; Hu, W.; Qiao, G. Substitution versus Wealth: Dual Effects of Non-Pastoral Income on Livestock Herd Size. World Dev. 2022, 151, 105749. [Google Scholar] [CrossRef]
- Chiodi, V.; Jaimovich, E.; Montes-Rojas, G. Migration, Remittances and Capital Accumulation: Evidence from Rural Mexico. J. Dev. Stud. 2012, 48, 1139–1155. [Google Scholar] [CrossRef]
- Goodwin, B.K.; Mishra, A.K. Farming Efficiency and the Determinants of Multiple Job Holding by Farm Operators. Am. J. Agric. Econ. 2004, 86, 722–729. [Google Scholar] [CrossRef]
- Kelly, P.; Huo, X. Land Retirement and Nonfarm Labor Market Participation: An Analysis of China’s Sloping Land Conversion Program. World Dev. 2013, 48, 156–169. [Google Scholar] [CrossRef]
- Davis, J.; Lopez-Carr, D. Migration, Remittances and Smallholder Decision-Making: Implications for Land Use and Livelihood Change in Central America. Land Use Policy 2014, 36, 319–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haggblade, S.; Hazell, P.; Reardon, T. The Rural Non-Farm Economy: Prospects for Growth and Poverty Reduction. World Dev. 2010, 38, 1429–1441. [Google Scholar] [CrossRef]
- Pan, D.; Tang, J.; Zhang, L.; He, M.; Kung, C.-C. The Impact of Farm Scale and Technology Characteristics on the Adoption of Sustainable Manure Management Technologies: Evidence from Hog Production in China. J. Clean. Prod. 2021, 280, 124340. [Google Scholar] [CrossRef]
- Uchida, E.; Rozelle, S.; Xu, J. Conservation Payments, Liquidity Constraints, and Off-Farm Labor: Impact of the Grain-for-Green Program on Rural Households in China. Am. J. Agric. Econ. 2009, 91, 70–86. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yin, N.; Yang, Z. Factors Affecting Sustained Adoption of Irrigation Water-Saving Technologies in Groundwater over-Exploited Areas in the North China Plain. Environ. Dev. Sustain. 2021, 23, 10528–10546. [Google Scholar] [CrossRef]
- Roessler, R.; Drucker, A.G.; Scarpa, R.; Markemann, A.; Lemke, U.; Thuy, L.T.; Valle Zárate, A. Using Choice Experiments to Assess Smallholder Farmers’ Preferences for Pig Breeding Traits in Different Production Systems in North–West Vietnam. Ecol. Econ. 2008, 66, 184–192. [Google Scholar] [CrossRef]
- Ruto, E.; Garrod, G.; Scarpa, R. Valuing Animal Genetic Resources: A Choice Modeling Application to Indigenous Cattle in Kenya. Agric. Econ. 2007, 38, 89–98. [Google Scholar] [CrossRef]
- Briske, D.D.; Sayre, N.F.; Huntsinger, L.; Fernandez-Gimenez, M.; Budd, B.; Derner, J.D. Origin, Persistence, and Resolution of the Rotational Grazing Debate: Integrating Human Dimensions Into Rangeland Research. Rangel. Ecol. Manag. 2011, 64, 325–334. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; De Laune, P.B.; Conover, D.M. Grazing Management Impacts on Vegetation, Soil Biota and Soil Chemical, Physical and Hydrological Properties in Tall Grass Prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Feng, S.; Heerink, N.; Ruben, R.; Qu, F. Land Rental Market, off-Farm Employment and Agricultural Production in Southeast China: A Plot-Level Case Study. China Econ. Rev. 2010, 21, 598–606. [Google Scholar] [CrossRef]
- Qian, W.; Wang, D.; Zheng, L. The Impact of Migration on Agricultural Restructuring: Evidence from Jiangxi Province in China. J. Rural Stud. 2016, 47, 542–551. [Google Scholar] [CrossRef]
- Khanna, M. Sequential Adoption of Site-Specific Technologies and Its Implications for Nitrogen Productivity: A Double Selectivity Model. Am. J. Agric. Econ. 2001, 83, 35–51. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- Feng, X.; Qiu, H.; Pan, J.; Tang, J. The Impact of Climate Change on Livestock Production in Pastoral Areas of China. Sci. Total Environ. 2021, 770, 144838. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, F.; Zhou, Q.; Chen, Q.; Liu, F. Simulation and Estimation of Future Ecological Risk on the Qinghai-Tibet Plateau. Sci. Rep. 2021, 11, 17603. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhou, X.; Renwick, A. Impact of Off-Farm Income on Household Energy Expenditures in China: Implications for Rural Energy Transition. Energy Policy 2019, 127, 248–258. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W.; Guo, Y.; Zhou, X. Interactive Relationship between Non-Farm Employment and Mechanization Service Expenditure in Rural China. China Agric. Econ. Rev. 2022, 14, 84–105. [Google Scholar] [CrossRef]
- Kpadonou, R.A.B.; Owiyo, T.; Barbier, B.; Denton, F.; Rutabingwa, F.; Kiemad, A. Advancing Climate-Smart-Agriculture in Developing Drylands: Joint Analysis of the Adoption of Multiple on-Farm Soil and Water Conservation Technologies in West African Sahel. Land Use Policy 2017, 61, 196–207. [Google Scholar] [CrossRef]
- Huang, W.; Qiao, F.; Liu, H.; Jia, X.; Lohmar, B. From Backyard to Commercial Hog Production Does It Lead to a Better or Worse Rural Environment? China Agric. Econ. Rev. 2016, 8, 22–36. [Google Scholar] [CrossRef]
- Li, D.; Hou, L.; Zuo, A. Informal Institutions and Grassland Protection: Empirical Evidence from Pastoral Regions in China. Ecol. Econ. 2021, 188, 107110. [Google Scholar] [CrossRef]
- Tey, Y.S.; Li, E.; Bruwer, J.; Abdullah, A.M.; Brindal, M.; Radam, A.; Ismail, M.M.; Darham, S. The Relative Importance of Factors Influencing the Adoption of Sustainable Agricultural Practices: A Factor Approach for Malaysian Vegetable Farmers. Sustain. Sci. 2014, 9, 17–29. [Google Scholar] [CrossRef]
- Tan, S.; Liu, B.; Zhang, Q.; Zhu, Y.; Yang, J.; Fang, X. Understanding Grassland Rental Markets and Their Determinants in Eastern Inner Mongolia, PR China. Land Use Policy 2017, 67, 733–741. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef] [Green Version]
- Foster, A.D.; Rosenzweig, M.R. Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture. J. Polit. Econ. 1995, 103, 1176–1209. [Google Scholar] [CrossRef]
- Rolfe, J.; Harvey, S. Heterogeneity in Practice Adoption to Reduce Water Quality Impacts from Sugarcane Production in Queensland. J. Rural Stud. 2017, 54, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Gimenez, M.E.; Batkhishig, B.; Batbuyan, B.; Ulambayar, T. Lessons from the Dzud: Community-Based Rangeland Management Increases the Adaptive Capacity of Mongolian Herders to Winter Disasters. World Dev. 2015, 68, 48–65. [Google Scholar] [CrossRef]
- Helfand, S.M.; Taylor, M.P.H. The Inverse Relationship between Farm Size and Productivity: Refocusing the Debate. Food Policy 2021, 99, 101977. [Google Scholar] [CrossRef]
- Jin, S.; Bluemling, B.; Mol, A.P.J. Information, Trust and Pesticide Overuse: Interactions between Retailers and Cotton Farmers in China. NJAS-Wagen. J. Life Sci. 2015, 72–73, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Mosse, D. Authority, Gender and Knowledge: Theoretical Reflections on the Practice of Participatory Rural Appraisal. Dev. Chang. 1994, 25, 497–526. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Bluemling, B.; Liu, Y.; Mol, A.P.J.; Chen, J. Managing Manure from China’s Pigs and Poultry: The Influence of Ecological Rationality. Ambio 2014, 43, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Böhme, M.H. Does Migration Raise Agricultural Investment? An Empirical Analysis for Rural Mexico. Agric. Econ. 2015, 46, 211–225. [Google Scholar] [CrossRef]
- Bolderdijk, J.W.; Steg, L.; Geller, E.S.; Lehman, P.K.; Postmes, T. Comparing the Effectiveness of Monetary versus Moral Motives in Environmental Campaigning. Nat. Clim. Chang. 2013, 3, 413–416. [Google Scholar] [CrossRef]
- Faccioli, M.; Czajkowski, M.; Glenk, K.; Martin-Ortega, J. Environmental Attitudes and Place Identity as Determinants of Preferences for Ecosystem Services. Ecol. Econ. 2020, 174, 106600. [Google Scholar] [CrossRef]
- Lin, S.-T.; Niu, H.-J. Green Consumption: Environmental Knowledge, Environmental Consciousness, Social Norms, and Purchasing Behavior. Bus. Strateg. Environ. 2018, 27, 1679–1688. [Google Scholar] [CrossRef]
- Wang, Y.; He, K.; Zhang, J.; Chang, H. Environmental Knowledge, Risk Attitude, and Households’ Willingness to Accept Compensation for the Application of Degradable Agricultural Mulch Film: Evidence from Rural China. Sci. Total Environ. 2020, 744, 140616. [Google Scholar] [CrossRef]
- De Groot, J.I.M.; Steg, L. Mean or Green: Which Values Can Promote Stable pro-Environmental Behavior? Conserv. Lett. 2009, 2, 61–66. [Google Scholar] [CrossRef]
- De Dominicis, S.; Schultz, P.W.; Bonaiuto, M. Protecting the Environment for Self-Interested Reasons: Altruism Is Not the Only Pathway to Sustainability. Front. Psychol. 2017, 8, 1065. [Google Scholar] [CrossRef] [Green Version]
- Fuller, K.; Grebitus, C.; Schmitz, T.G. The Effects of Values and Information on the Willingness to Pay for Sustainability Credence Attributes for Coffee. Agric. Econ. 2022, agec.12706. [Google Scholar] [CrossRef]
- Yadav, R. Altruistic or Egoistic: Which Value Promotes Organic Food Consumption among Young Consumers? A Study in the Context of a Developing Nation. J. Retail. Consum. Serv. 2016, 33, 92–97. [Google Scholar] [CrossRef]
- Lades, L.K.; Laffan, K.; Weber, T.O. Do Economic Preferences Predict Pro-Environmental Behaviour? Ecol. Econ. 2021, 183, 106977. [Google Scholar] [CrossRef]
Variables | Description | Mean | S.D. |
---|---|---|---|
Dependent variables | |||
TA | Whether any of the two categories of technologies were adopted (No = 0, Yes = 1) | 0.365 | 0.482 |
No_Tech | Number of technologies adopted {0, 1, 2, 3} | 0.466 | 0.678 |
Profit_Tech | Whether profit-seeking technology was adopted (No = 0, Yes = 1) | 0.233 | 0.424 |
Env_Tech | Whether pro-environmental technology was adopted (No = 0, Yes = 1) | 0.226 | 0.419 |
Exploratory variables | |||
Scale | Number of livestock sales in 2020 (sheep units) a c | 73.753 | 109.180 |
NPE | Whether respondent participated in NPE (No = 0, Yes = 1) | 0.486 | 0.500 |
Sub | Substitution effect: the proportion of the NPE time over the whole year (%) | 0.117 | 0.170 |
Wealth | Wealth effect: the proportion of NPE income against household total income (%) | 0.208 | 0.296 |
EA | Principal component analysis of the measurement scale of environmental awareness b | 0 | 1 |
Alt | Altruism: donation ratio (%) c | 0.207 | 0.260 |
Male | Proportion of male labor in total household labor (%) d | 0.503 | 0.209 |
Age | Average age of household laborer (year) | 37.968 | 9.557 |
Education | Average education level of household laborer (year) | 5.312 | 3.676 |
Health | Average perceived health level of household laborer (very bad = 1, bad = 2, normal = 3, good = 4, very good = 5) | 4.037 | 1.074 |
Mandarin | Average Chinese Mandarin fluency level of household laborer (cannot understand nor write = 1, only understand but cannot communicate nor write = 2, simple communication but cannot write = 3, proficient communication but cannot write = 4, proficient communication and writing = 5) | 3.020 | 1.395 |
Training | Frequency of technology training attended by the household over the past three years (times) | 0.682 | 1.919 |
No_Guests | Number of people invited to children’s wedding (person) c | 161.402 | 174.644 |
Informal_ins | Whether the village has written village regulations (No = 0, Yes = 1) | 0.223 | 0.417 |
D_Town | Distance between the village office and the town office (km) c | 19.908 | 32.663 |
D_County | Distance between the village office and the county/banner office (km) c | 68.176 | 66.587 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
Scale | 0.332 *** (4.33) | 0.263 *** (−3.37) | 0.196 ** (2.06) | 0.182 ** (2.05) |
NPE | −0.455 ** (−2.31) | — | −1.599 *** (−3.33) | — |
Sub | — | 1.140 * (1.85) | — | 0.118 (0.06) |
Wealth | — | −2.071 *** (−4.53) | — | −3.672 *** (−3.52) |
— | — | 0.334 *** (2.70) | ||
— | — | — | 0.222 (0.47) | |
— | — | — | 0.570 * (1.71) | |
EA | 0.061 (−0.64) | 0.091 (−0.96) | 0.058 (−0.57) | 0.096 (−0.98) |
Alt | 0.103 * (−1.68) | 0.088 (−1.43) | 0.092 (−1.5) | 0.082 (−1.31) |
Male | −0.068 (−0.16) | −0.132 (−0.30) | 0.02 (−0.05) | −0.106 (−0.24) |
Age | −0.003 (−0.19) | −0.007 (−0.50) | 0.001 (−0.07) | −0.007 (−0.47) |
Education | −0.006 (−0.13) | −0.027 (−0.61) | −0.012 (−0.26) | −0.028 (−0.62) |
Health | 0.017 (−0.18) | −0.013 (−0.14) | 0.009 (−0.1) | −0.012 (−0.12) |
Mandarin | 0.011 (−0.08) | 0.078 (−0.51) | 0.087 (−0.6) | 0.097 (−0.62) |
Training | 0.095 ** (−2.24) | 0.094 ** (−2.2) | 0.090 ** (−2.08) | 0.093 ** (−2.17) |
No_guests | 0.079 (−1.1) | 0.068 (−0.94) | 0.072 (−0.98) | 0.065 (−0.85) |
Informal_ins | 0.443 * (−1.87) | 0.535 ** (−2.16) | 0.436 * (−1.8) | 0.498 * (−1.96) |
D_Town | −0.127 (−1.57) | −0.157 * (−1.88) | −0.126 (−1.56) | −0.160 * (−1.92) |
D_County | −0.061 (−0.73) | 0.091 (−0.96) | −0.084 (−1.00) | −0.09 (−1.06) |
Constant | −0.563 (−0.48) | 0.138 (−0.11) | −0.433 (−0.35) | 0.376 (−0.29) |
County | Controlled | Controlled | Controlled | Controlled |
Observations | 296 | 296 | 296 | 296 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 |
Pseudo R2 | 0.276 | 0.308 | 0.294 | 0.320 |
Variables | Model 5 | Model 6 | Model 7 | Model 8 |
---|---|---|---|---|
Scale | 0.294 *** (3.61) | 0.228 *** (2.80) | 0.184 ** (2.05) | 0.162 ** (1.99) |
NPE | −0.311 * (−1.81) | — | −1.311 ** (−2.42) | — |
Sub | — | 1.188 ** (2.25) | — | 2.066 (0.68) |
Wealth | — | −2.037 *** (−4.67) | — | −5.1164 ** (−2.30) |
— | — | 0.288 ** (2.13) | — | |
— | — | — | −0.298 (−0.40) | |
— | — | — | 0.999 * (−1.69) | |
EA | 0.130 (1.44) | 0.167 (1.85) | 0.129 (1.34) | 0.182 *(1.92) |
Alt | 0.863 (−0.40) | 0.066 (0.065) | 0.075 (1.35) | 0.061 (1.08) |
Control variable | Controlled | Controlled | Controlled | Controlled |
County | Controlled | Controlled | Controlled | Controlled |
Observations | 296 | 296 | 296 | 296 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 |
Pseudo R2 | 0.225 | 0.258 | 0.236 | 0.272 |
Variables | Profit_Tech | Env_Tech | ||
---|---|---|---|---|
Model 9 | Model 10 | Model 11 | Model 12 | |
Scale | 0.285 *** (3.89) | 0.254 *** (3.36) | 0.369 *** (4.93) | 0.331 *** (4.38) |
NPE | −0.268 (−1.42) | — | −0.295 * (−1.65) | — |
Sub | — | 0.618 (0.86) | — | 1.763 *** (2.73) |
Wealth | — | −1.162 ** (−2.49) | — | −2.440 *** (−4.54) |
EA | 0.086 (−0.89) | 0.101 (−1.08) | 0.213 ** (−2.12) | 0.261 ** (−2.48) |
Alt | 0.023 (−0.37) | 0.015 (−0.24) | 0.138 ** (−2.05) | 0.125 * (−1.82) |
Control variable | Controlled | Controlled | Controlled | Controlled |
Constant | −1.456 * (−1.92) | −1.125 (−1.43) | −2.991 *** (−3.77) | −2.549 *** (−3.16) |
County | Controlled | Controlled | Controlled | Controlled |
Observations | 296 | 296 | 296 | 296 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 |
Pseudo R2 | 0.212 | 0.224 | 0.183 | 0.233 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Zhang, Y.; Huang, Y.; Xu, G.; Shang, S. Sales Scale, Non-Pastoral Employment and Herders’ Technology Adoption: Evidence from Pastoral China. Land 2022, 11, 1011. https://doi.org/10.3390/land11071011
Huang Z, Zhang Y, Huang Y, Xu G, Shang S. Sales Scale, Non-Pastoral Employment and Herders’ Technology Adoption: Evidence from Pastoral China. Land. 2022; 11(7):1011. https://doi.org/10.3390/land11071011
Chicago/Turabian StyleHuang, Zhipeng, Yan Zhang, Yi Huang, Gang Xu, and Shengping Shang. 2022. "Sales Scale, Non-Pastoral Employment and Herders’ Technology Adoption: Evidence from Pastoral China" Land 11, no. 7: 1011. https://doi.org/10.3390/land11071011
APA StyleHuang, Z., Zhang, Y., Huang, Y., Xu, G., & Shang, S. (2022). Sales Scale, Non-Pastoral Employment and Herders’ Technology Adoption: Evidence from Pastoral China. Land, 11(7), 1011. https://doi.org/10.3390/land11071011