A Participatory and Spatial Multicriteria Decision Approach to Prioritize the Allocation of Ecosystem Services to Management Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Research Design
2.2.1. MCDA Models
2.2.2. Consensual Solutions
- The level of the ESs represented in the scroll bars, fixing them.
- The level of the ESs represented in columns and rows.
- The level of the third ESs represented in decision maps.
- Finally, the desired level on ESs in Y and X axis.
2.2.3. Data Normalization
2.2.4. Prioritizing the Allocation of Ecosystem Services to Management Units
2.3. Data Analysis
2.4. Identifying Management Units in which There Is Low Conflict among Interest Groups
3. Results
3.1. Consensual Solutions
3.2. Priority Scores of the Allocation of Ecosystem Services to Management Units
3.3. Differences between Interest Groups
3.4. Opportunities to Minimize Conflicts among Interest Groups
4. Discussion
4.1. Convergence and Divergence among Interest Groups
4.2. Opportunities to Avoid Conflict
4.3. Limitations of the Study and Future Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Disclaimer
Acknowledgments
Conflicts of Interest
References
- Uhde, B.; Hahn, A.; Griess, V.C.; Knoke, T. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review. Environ. Manag. 2015, 56, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Caglayan, İ.; Yeşil, A.; Kabak, Ö.; Bettinger, P. A decision making approach for assignment of ecosystem services to forest management units: A case study in northwest. Turkey. Ecol. Indic. 2021, 121, 107056. [Google Scholar] [CrossRef]
- Bruña-García, X.; Marey-Pérez, M.F. Public participation: A need of forest planning. IForest 2014, 7, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Kangas, A.; Saarinen, N.; Saarikoski, H.; Leskinen, L.A.; Hujala, T.; Tikkanen, J. Stakeholder perspectives about proper participation for Regional Forest Programmes in Finland. For. Policy Econ. 2010, 12, 213–222. [Google Scholar] [CrossRef]
- Marques, M.; Juerges, N.; Borges, J.G. Appraisal framework for actor interest and power analysis in forest management—Insights from Northern Portugal. For. Policy Econ. 2020, 111, 14. [Google Scholar] [CrossRef]
- Valente, S.; Coelho, C.; Ribeiro, C.; Soares, J. Forest Intervention Areas (ZIF): A New Approach for Non-Industrial Private Forest Management in Portugal. Silva Lusit. 2013, 21, 137–161. [Google Scholar]
- Tóth, S.F.; McDill, M.E.; Rebain, S. Finding the efficient frontier of a bi-criteria, spatially explicit, harvest scheduling problem. For. Sci. 2006, 52, 93–107. [Google Scholar] [CrossRef]
- Tóth, S.F.; McDill, M.E. Finding efficient harvest schedules under three conflicting objectives. For. Sci. 2009, 55, 117–131. [Google Scholar] [CrossRef]
- Lotov, A.V.; Bushenkov, V.A.; Kamenev, G.K. Interactive Decision Maps: Approximation and Visualization of Pareto Frontier; Kluwer Academic Publishers: Norwell, MA, USA, 2004. [Google Scholar]
- Marto, M.; Reynolds, K.M.; Borges, J.G.; Bushenkov, V.A.; Marques, S. Combining Decision Support Approaches for Optimizing the Selection of Bundles of Ecosystem Services. Forests 2018, 9, 438. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, K.M.; Hessburg, P.F.; Bourgeron, P.S. Making Transparent Environmental Management Decisions. Applications of the Ecosystem Management Decision Support System; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-31999-0. [Google Scholar]
- Borges, J.G.; Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Marques, S.; Oliveira, M.M. Addressing Multicriteria Forest Management With Pareto Frontier Methods: An Application in Portugal. For. Sci. 2014, 60, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.; Nordström, E.-M. A Multiple Criteria Approach for Negotiating Ecosystem Services Supply Targets and Forest Owners’ Programs. For. Sci. 2017, 63, 49–61. [Google Scholar] [CrossRef]
- Marques, S.; Marto, M.; Bushenkov, V.; McDill, M.; Borges, J. Addressing Wildfire Risk in Forest Management Planning with Multiple Criteria Decision Making Methods. Sustainability 2017, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Marques, S.; Bushenkov, V.A.; Lotov, A.V.; Marto, M.; Borges, J.G. Bi-Level Participatory Forest Management Planning Supported by Pareto Frontier Visualization. For. Sci. 2020, 66, 490–500. [Google Scholar] [CrossRef]
- Marto, M.; Bushenkov, V.A.; Reynolds, K.M.; Borges, J.G.; Marques, S. A web-based approach for visualizing interactive decision maps. Information 2021, 12, 9. [Google Scholar] [CrossRef]
- Malczewski, J. Multiple criteria decision analysis and Geographic Information Systems. In Trends in Multiple Criteria Decision Analysis; Ehrgott, M., Figueira, J.R., Greco, S., Eds.; Springer Science: New York, NY, USA, 2010; pp. 369–395. [Google Scholar]
- Puente, M.C.R. Planning for Urban Growth and Sustainable Industrial Development. In Making Transparent Environmental Management Decisions; Reynolds, K.M., Hessburg, P.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 253–276. ISBN 978-3-642-31999-0. [Google Scholar]
- Bottero, M.; Comino, E.; Duriavig, M.; Ferretti, V.; Pomarico, S. The application of a Multicriteria Spatial Decision Support System (MCSDSS) for the assessment of biodiversity conservation in the Province of Varese (Italy). Land Use Policy 2013, 30, 730–738. [Google Scholar] [CrossRef]
- Reinhardt, J.R.; Russell, M.B.; Lazarus, W.F. Prioritizing Invasive Forest Plant Management Using Multi-Criteria Decision Analysis in Minnesota, USA. Forests 2020, 11, 1213. [Google Scholar] [CrossRef]
- Povak, N.A.; Hessburg, P.F.; Giardina, C.P.; Reynolds, K.M.; Heider, C.; Salminen, E.; Salter, R.B.; MacKenzie, R.A. A watershed decision support tool for managing invasive species on Hawai’i Island, USA. For. Ecol. Manag. 2017, 400, 300–320. [Google Scholar] [CrossRef]
- Uribe, D.; Geneletti, D.; del Castillo, R.F.; Orsi, F. Integrating stakeholder preferences and GIS-based multicriteria analysis to identify forest landscape restoration priorities. Sustainability 2014, 6, 935–951. [Google Scholar] [CrossRef] [Green Version]
- Cannon, J.; Hickey, R.; Gaines, W.; Forest, N.; State, W.; Cannon, J.; Hickey, R.; Gaines, W. Using GIS and the Ecosystem Management Decision Support Tool for Forest Management on the Okanogan-Wenatchee National Forest, Washington State. J. For. 2018, 116, 460–472. [Google Scholar] [CrossRef]
- Reynolds, K.M.; Murphy, P.J.; Paplanus, S. Toward Geodesign for Watershed Restoration on the Fremont-Winema National Forest, Pacific Northwest, USA. Sustainability 2017, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- ICNF. 6.o Inventário Florestal Nacional (IFN6). Relatório Final; ICNF–Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2019. [Google Scholar]
- ICNF. Portugal Perfil Florestal; ICNF–Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2021. [Google Scholar]
- ICNF. ZIF Constituídas e em Processo de Constituição no Final de 2020. Nota Informativa da DGVF/DGFC—Janeiro de 2021; ICNF–Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2021. [Google Scholar]
- ICNF. geoCATALOGO—Catálogo com Informação Geográfica de Dados Abertos (Opendata), Territórios Ardidos. ICNF–Instituto da Conservação da Natureza e das Florestas. Available online: https://geocatalogo.icnf.pt/catalogo.html (accessed on 20 February 2021).
- Marques, M.; Oliveira, M.; Borges, J.G. An approach to assess actors’ preferences and social learning to enhance participatory forest management planning. Trees For. People 2020, 2, 100026. [Google Scholar] [CrossRef]
- Marques, M.; Reynolds, K.M.; Marto, M.; Lakicevic, M.; Caldas, C.; Murphy, P.J.; Borges, J.G. Multicriteria Decision Analysis and Group Decision-Making to Select Stand-Level Forest Management Models and Support Landscape-Level Collaborative Planning. Forests 2021, 12, 399. [Google Scholar] [CrossRef]
- Krueger, R.A.; Casey, M.A. Focus Groups: A practical Guide for Applied Research, 5th ed.; Krueger, R.A., Casey, M.A., Eds.; SAGE Publications: Los Angeles, CA, USA, 2015; ISBN 9781483365244. [Google Scholar]
- Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Borges, J.G. A decision support system for assessing trade-offs between ecosystem management goals: An application in Portugal. Forests 2015, 6, 65–87. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International Book Company: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Marto, M.; Reynolds, K.M.; Borges, J.G.; Bushenkov, V.A.; Marques, S.; Marques, M.; Barreiro, S.; Botequim, B.; Tomé, M. Web-Based Forest Resources Management Decision Support System. Forests 2019, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.; Patrício, M.; Tomé, J.; Tomé, M. Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables. Ann. For. Sci. 2011, 68, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.; Tomé, J.; Tomé, M. Prediction of annual tree growth and survival for thinned and unthinned even-aged maritime pine stands in Portugal from data with different time measurement intervals. For. Ecol. Manag. 2011, 262, 1491–1499. [Google Scholar] [CrossRef]
- Alegria, C. PBIRROL Modelo de Crescimento e Produção para os Povoamentos de Pinheiro Bravo de Estrutura Irregular do Concelho de Oleiros. Agroforum 2007, 18, 13–17. [Google Scholar]
- Tomé, M.; Oliveira, T.; Soares, P.O. Modelo GLOBULUS 3.0—Dados e Equações; GIMREF - RC2/2006; Universidade Técnica de Lisboa. Instituto Superior de Agronomia. Centro de Estudos Florestais: Lisboa, Portugal, 2006. [Google Scholar]
- Barreiro, S.; Rua, J.; Tomé, M. StandsSIM-MD: A management driven forest SIMulator. For. Syst. 2016, 25, 5. [Google Scholar] [CrossRef] [Green Version]
- do Monteiro, M.L.R.M.; do Patrício, M.S.F. O castanheiro—Modelos de gestão. Rev. Florest. 1996, IX, 51–55. [Google Scholar]
- Gómez-García, E.; Crecente-Campo, F.; Barrio-Anta, M.; Diéguez-Aranda, U. A disaggregated dynamic model for predicting volume, biomass and carbon stocks in even-aged pedunculate oak stands in Galicia (NW Spain). Eur. J. For. Res. 2015, 134, 569–583. [Google Scholar] [CrossRef]
- Gómez-García, E.; Diéguez-Aranda, U.; Cunha, M.; Rodríguez-Soalleiro, R. Comparison of harvest-related removal of aboveground biomass, carbon and nutrients in pedunculate oak stands and in fast-growing tree stands in NW Spain. For. Ecol. Manage 2016, 365, 119–127. [Google Scholar] [CrossRef]
- Almeida, A.M.; Tomé, J.; Tomé, M. Development of a system to predict the evolution of individual tree mature cork caliber over time. For. Ecol. Manag. 2010, 260, 1303–1314. [Google Scholar] [CrossRef]
- Barreiro, S.; Tomé, M. Modeling growth of unknown age even-aged eucalyptus stands. In Proceedings of the International Conference Modeling Forest Production. Scientific Tools-data Needs and Sources. Validation and Application, Vienna, Austria, 19–22 April 2004; Hasenauer, H., Mäkelä, A., Eds.; pp. 34–43. [Google Scholar]
- Claessens, H.; Oosterbaan, A.; Savill, P.; Rondeux, J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 2010, 83, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Paulo, J.A.; Tomé, M. Predicting mature cork biomass with t years of growth from one measurement taken at any other age. For. Ecol. Manag. 2010, 259, 1993–2005. [Google Scholar] [CrossRef]
- Paulo, J.A.; Palma, J.H.N.; Gomes, A.A.; Faias, S.P.; Tomé, J.; Tomé, M. Predicting site index from climate and soil variables for cork oak (Quercus suber L.) stands in Portugal. New For. 2015, 46, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Paulo, J.A. Desenvolvimento de um Sistema para Apoio à Gestão Sustentável de Montados de Sobro. Ph.D. Thesis, Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, Portugal, 2011. [Google Scholar]
- Paulo, J.A.; Tomé, J.; Tomé, M. Nonlinear fixed and random generalized height-diameter models for Portuguese cork oak stands. Ann. For. Sci. 2011, 68, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-González, P.M.; Stella, J.C.; Campelo, F.; Ferreira, M.T.; Albuquerque, A. Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. For. Ecol. Manag. 2010, 259, 2015–2025. [Google Scholar] [CrossRef]
- Paulo, J.A.; Tomé, M. Equações para Estimação do Volume e Biomassa de duas Espécies de Carvalhos: Quercus Suber e Quercus Ilex; Publicações GIMREF -RC1/2006; Universidade Técnica de Lisboa. Instituto Superior de Agronomia. Centro de Estudos Florestais: Lisboa, Portugal, 2006. [Google Scholar]
- Botequim, B.; Bugalho, M.N.; Rodrigues, A.R.; Marques, S.; Marto, M.; Borges, J.G. Combining tree species composition and understory coverage indicators with optimization techniques to address concerns with landscape-level biodiversity. Land 2021, 10, 126. [Google Scholar] [CrossRef]
- Lundholm, A.; Black, K.; Corrigan, E.; Nieuwenhuis, M. Evaluating the Impact of Future Global Climate Change and Bioeconomy Scenarios on Ecosystem Services Using a Strategic Forest Management Decision Support System. Front. Ecol. Evol. 2020, 8, 1–21. [Google Scholar] [CrossRef]
- Rodrigues, A.R.; Botequim, B.; Tavares, C.; Pécurto, P.; Borges, J.G. Addressing soil protection concerns in forest ecosystem management under climate change. For. Ecosyst. 2020, 7. [Google Scholar] [CrossRef]
- Lenhard, W.; Lenhard, A. Calculation of Effect Sizes. Available online: https://www.psychometrica.de/effect_size.html (accessed on 10 April 2021).
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Bivins, S.; Bible, M.J. Portfolio Decisions to Maximize Strategic Benefits. PM World J. 2015, IV, 1–20. [Google Scholar]
- Salo, A.; Keisler, J.; Morton, A. Portfolio Decision Analysis. Improved Methods for Resource Allocation; Salo, A., Keisler, J., Morton, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9781441999429. [Google Scholar]
Criteria/Sub-Criteria | Civil Society | Forest Owners | Market Agents | Public Administration |
---|---|---|---|---|
Income | 0.221 | 0.327 | 0.400 | 0.405 |
Revenue | 0.043 | 0.066 | 0.105 | 0.120 |
Revenue flow | 0.068 | 0.102 | 0.144 | 0.073 |
Diversification of income sources | 0.110 | 0.159 | 0.151 | 0.212 |
Wood | 0.071 | 0.149 | 0.168 | 0.139 |
Sawtimber | 0.052 | 0.073 | 0.068 | 0.080 |
Pulpwood and Small Roundwood | 0.019 | 0.076 | 0.100 | 0.059 |
Biodiversity | 0.185 | 0.096 | 0.089 | 0.093 |
Cultural Services | 0.096 | 0.077 | 0.054 | 0.035 |
Personal benefit | 0.027 | 0.040 | 0.018 | 0.012 |
Leisure and recreation activities | 0.070 | 0.037 | 0.037 | 0.023 |
Soil Erosion | 0.150 | 0.190 | 0.101 | 0.068 |
Risks | 0.276 | 0.161 | 0.188 | 0.260 |
Pest and Diseases | 0.048 | 0.038 | 0.053 | 0.044 |
Wildfires | 0.160 | 0.077 | 0.105 | 0.193 |
Market | 0.068 | 0.046 | 0.030 | 0.024 |
Interest Group and Type of Actor | Attended the Focus Group Session | Number of Tested Solutions to Select a Consensus Solution |
---|---|---|
Civil Society | 4 | 3 |
Environmental NGO | 3 | |
Forest Certification | 1 | |
Forest Owners | 6 | 1 |
Forest Owners’ Association | 1 | |
Forest Owners (Non-Industrial) | 4 | |
Parish Council with Community Areas | 1 | |
Market Agents | 5 | 4 |
Biomass Industry | 1 | |
Forest Investment Fund | 1 | |
Wood Industry | 3 | |
Public Administration | 4 | 4 |
Forest Authority | 3 | |
Municipality | 1 | |
Total | 19 | 12 |
Criterion | Sub-Criterion | Units | Classes | Data References | ||||
---|---|---|---|---|---|---|---|---|
1 (Very Poor) | 2 (Poor) | 3 (Moderate) | 4 (Good) | 5 (Very Good) | ||||
Income | Revenue | €/ha | ≤0 | ]0–4000] | ]4000–8000] | ]8000–12,000] | >12,000 | Net Present Value (NPV) using 3% discount rate |
Revenue flow | nr. | [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] | ]10–20] | ]20–30] | ]30–40] | >40 | Frequency of revenue | |
Diversification of income sources | nr. | 0 | 1 | 2 | 3 | ≥4 | No. of profitable wood and non-wood forest products | |
Wood | Sawtimber | m3/ha | 0 | ]0–200] | ]200–400] | ]400–600] | >600 | Species volume [36,37,38,39,40,41,42,43,44,45] |
Pulpwood and small roundwood | m3/ha | 0 | ]0–150] | ]150–300] | ]300–1000] | >1000 | Species volume [46,47,48,49,50,51,52] | |
Biodiversity | index * | 1 to 5 (where 1 is associated with less biodiversity and 5 more biodiversity) | Biodiversity scores [53] | |||||
Cultural Services | Personal benefit | nr. | 1 | 2 | 3 | 4 | ≥5 | No. of recreational activities |
Leisure and recreation | index * | 1 to 5 (where 1 is associated with less appealing for leisure and recreation and 5 more appealing for leisure and recreation) | Recreation aesthetics forest landscape (RAFL) index [54] | |||||
Soil Erosion | t/year | ≥75 | [55–75[ | [25–55[ | [10–25[ | [0–10[ | Universal soil loss equation (USLE) [55] | |
Risks | Pest and diseases | nominal | chestnut and eucalypt (elevation ≥ 500 m) | eucalypt (elevation < 500 m) | maritime pine | cork oak and pedunculate oak | riparian species | Species according to actors’ interviews [5] |
Wildfires | index * | 1 to 5 (where 1 is associated with less fire resistance and 5 more fire resistance) | Wildfire resistance (RAit) index [14] | |||||
Market | nominal | riparian species | chestnut | pedunculate oak | maritime pine | eucalypt and cork oak | Species according to actors’ interviews [5] |
Ecosystem Services | Unit | Interest Group | |||
---|---|---|---|---|---|
Civil Society | Forest Owners | Market Agents | Public Administration | ||
Biodiversity | index: 0–7 | 3.26 | 3.07 | 3.14 | 3.20 |
Carbon stock | 105 t/year | 54.09 | 47.51 | 53.87 | 53.55 |
Cork | 106 arroba * | 3.30 | 2.15 | 3.26 | 3.19 |
Cultural services | index: 1–5 | 3.07 | 3.06 | 3.09 | 3.08 |
Soil erosion | 106 t | 20.34 | 22.36 | 21.92 | 22.50 |
Wildfire risk resistance | index: 1–5 | 3.67 | 3.01 | 3.84 | 3.50 |
Wood | 106 m3 | 8.44 | 11.10 | 9.39 | 9.84 |
Interest Group Pairs | Mean Rank | Sum of Ranks | Mann-Whitney U | Wilcoxon W | Z | p-Value | Effect Size (Cohen’s d) 1 | |
---|---|---|---|---|---|---|---|---|
Civil Society | 1604.89 | 2,203,508 | 624,872 | 1,568,123 | −15.302 | 0.000 | 0.61 | medium |
Forest Owners | 1142.11 | 1,568,123 | ||||||
Civil Society | 1690.15 | 2,320,581 | 507,800 | 1,451,051 | −20.939 | 0.000 | 0.87 | large |
Market Agents | 1056.85 | 1,451,051 | ||||||
Civil Society | 1643.49 | 2,256,514 | 571,867 | 1,515,118 | −17.854 | 0.000 | 0.72 | medium |
Public Administration | 1103.51 | 1,515,118 | ||||||
Forest Owners | 1503.80 | 2,064,717 | 763,663 | 1,706,914 | −8.617 | 0.000 | 0.33 | small |
Market Agents | 1243.20 | 1,706,914 | ||||||
Forest Owners | 1417.91 | 1,946,793 | 881,588 | 1,824,839 | −2.937 | 0.003 | 0.11 | very small |
Public Administration | 1329.09 | 1,824,839 | ||||||
Market Agents | 1304.75 | 1,791,422 | 848,171 | 1,791,422 | −4.546 | 0.000 | 0.17 | small |
Public Administration | 1442.25 | 1,980,210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, M.; Reynolds, K.M.; Marques, S.; Marto, M.; Paplanus, S.; Borges, J.G. A Participatory and Spatial Multicriteria Decision Approach to Prioritize the Allocation of Ecosystem Services to Management Units. Land 2021, 10, 747. https://doi.org/10.3390/land10070747
Marques M, Reynolds KM, Marques S, Marto M, Paplanus S, Borges JG. A Participatory and Spatial Multicriteria Decision Approach to Prioritize the Allocation of Ecosystem Services to Management Units. Land. 2021; 10(7):747. https://doi.org/10.3390/land10070747
Chicago/Turabian StyleMarques, Marlene, Keith M. Reynolds, Susete Marques, Marco Marto, Steve Paplanus, and José G. Borges. 2021. "A Participatory and Spatial Multicriteria Decision Approach to Prioritize the Allocation of Ecosystem Services to Management Units" Land 10, no. 7: 747. https://doi.org/10.3390/land10070747
APA StyleMarques, M., Reynolds, K. M., Marques, S., Marto, M., Paplanus, S., & Borges, J. G. (2021). A Participatory and Spatial Multicriteria Decision Approach to Prioritize the Allocation of Ecosystem Services to Management Units. Land, 10(7), 747. https://doi.org/10.3390/land10070747