Are There Any Undesired Effects of Anti-Land Fragmentation Programs on Farm Production Practices and Farm Input Use?
Abstract
:1. Introduction
2. Materials and Methods Data
2.1. Background on the Anti-Land Fragmentation Program in Taiwan
2.2. Data
2.3. Econometric Model
3. Results
4. Discussion
5. Conclusions and Research Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrett, C. On price risk and the inverse farm-size productivity relationship. J. Dev. Econ. 1996, 51, 193–215. [Google Scholar] [CrossRef] [Green Version]
- Carletto, C.; Savastano, S.; Zezz, A. Fact or artifact: The impact of measurement errors on the farm size-productivity relationship. J. Dev. Econ 2013, 103, 254–261. [Google Scholar] [CrossRef]
- Fan, S.; Kang, C.C. Is small beautiful? Farm size, productivity, and poverty in Asian agriculture. Agric. Econ. 2005, 32, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Hefland, S.; Taylor, M. The inverse relationship between farm size and productivity: Refocusing the debate. Food Policy 2020. [Google Scholar] [CrossRef]
- Rada, N.; Hefland, S.; Magalhaes, M. Agricultural productivity growth in Brazil: Large and small farms excel. Food Policy 2020, 84, 176–185. [Google Scholar] [CrossRef]
- Desiere, S.; Jolliffe, D. Land productivity and plot size: Is measurement error driving the inverse relationship? J. Dev. Econ. 2018, 130, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, D. Can unobserved land quality explain the inverse productivity relationship? J. Dev. Econ. 1995, 46, 51–84. [Google Scholar] [CrossRef]
- Latruffe, L.; Piet, L. Does land fragmentation affect farm performance? A case study from Brittany, France. Agric. Syst. 2014, 129, 68–80. [Google Scholar] [CrossRef]
- Niroula, S.; Thapa, G. Impact and Causes of Land Fragmentation, and Lessons Learned from Land Consolidation in South Asia. Land Use Policy 2005, 22, 358–372. [Google Scholar] [CrossRef]
- Hung, P.V.; MacAulay, G.T.; Marsh, S. The Economics of Land Fragmentation in the North of Vietnam. Aust. J. Agric. Resour. Econ. 2007, 51, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Borchers, A.; Ifft, J.; Kuethe, T. Linking the Price of Agricultural Land to Use Values and Amenities. Am. J. Agric. Econ. 2014, 96, 1307–1320. [Google Scholar] [CrossRef]
- Tran, T.; Vu, H. Land fragmentation and household income: First evidence from rural Vietnam. Land Use Policy 2019, 89, 104247. [Google Scholar] [CrossRef]
- Demetriou, D. The Development of An Integrated Planning and Decision Support System (IPDSS) for Land Consolidation; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Beltramo, R.; Rostagno, A.; Bonadonna, A. Land Consolidation Associations and the Management of Territories in Harsh Italian Environments: A Review. Resources 2018, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Hiironen, J.; Riekkinen, K. Agricultural Impacts and Profitability of Land Consolidations. Land Use Policy 2016, 55, 309–317. [Google Scholar] [CrossRef]
- Zeng, S.; Zhu, F.; Chen, F.; Yu, M.; Zhang, S.; Yang, Y. Assessing the Impacts of Land Consolidation on Agricultural Technical Efficiency of Producers: A Survey from Jiangsu Province, China. Sustainability 2018, 10, 2490. [Google Scholar] [CrossRef] [Green Version]
- Asimeh, M.; Nooripoor, M.; Azadi, H.; van Eetvelde, V.; Sklenicka, P.; Witlox, F. Agricultural Land Use Sustainability in Southwest Iran: Improving Land Leveling Using Consolidation Plans. Land Use Policy 2020, 94, 104555. [Google Scholar] [CrossRef]
- Boonyanam, N. Land Use—Assessing the Past, Envisioning the Future; InTechOpen: London, UK, 2018. [Google Scholar]
- Ministry of Justice. Agricultural Development Act. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=M0020001 (accessed on 24 October 2020).
- Nilsson, P. The Role of Land Use Consolidation in Improving Crop Yields among Farm Households in Rwanda. J. Dev. Stud. 2019, 55, 1726–1740. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Liu, M.; Davis, J. Land Consolidation and Productivity in Chinese Household Crop Production. China Econ. Rev. 2005, 16, 28–49. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Forty Years Later: Assessment of the Long-Lasting Effectiveness of Land Consolidation Projects. Land Use Policy 2019, 83, 22–31. [Google Scholar] [CrossRef]
- Livanis, G.; Moss, C.; Breneman, V.; Nehring, R. Urban Sprawl and Farmland Prices. Am. J. Agric. Econ. 2006, 88, 915–929. [Google Scholar] [CrossRef]
- Li, Y.; Wu, W.; Liu, Y. Land Consolidation for Rural Sustainability in China: Practical Reflections and Policy Implications. Land Use Policy 2018, 74, 137–141. [Google Scholar] [CrossRef]
- Pasakarnis, G.; Maliene, V. Towards Sustainable Rural Development in Central and Eastern Europe: Applying Land Consolidation. Land Use Policy 2010, 27, 545–549. [Google Scholar] [CrossRef]
- Lee, D.; Lemieux, T. Regression Discontinuity Designs in Economics. J. Econ. Lit. 2010, 48, 281–355. [Google Scholar] [CrossRef] [Green Version]
- Kremen, C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. N. Y. Acad. Sci. 2015, 1355, 52–76. [Google Scholar] [CrossRef]
- Overview of Council of Agriculture. Available online: https://eng.coa.gov.tw/ws.php?id=9501 (accessed on 25 October 2020).
- Agricultural Development Act. Available online: https://www.ecolex.org/details/legislation/agricultural-development-act-lex-faoc101327/ (accessed on 25 October 2020).
- Chang, H.H.; Lin, T.Z. Does the Minimum Lot Size Program Affect Farmland Values? Empirical Evidence Using Administrative Data and Regression Discontinuity Design in Taiwan. Am. J. Agric. Econ. 2015, 98, aav064. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Interior. Report on the Agricultural Zones of Farmland Use in Taiwan; Ministry of Interior: Taipei, Taiwan, 2017.
- Lowder, S.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Doss, C. Women and Agricultural Productivity: Reframing the Issues. Dev. Policy Rev. 2017, 36, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Hahn, J.; Todd, P.; Klaauw, W. Identification and Estimation of Treatment Effects with a Regression Discontinuity Design. Econometrica 2001, 69, 201–209. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software; Release College Station: College Station, TX, USA, 2020. [Google Scholar]
- Chang, H.H.; Lin, T.Z. Does a Farmland Zoning Program Impact Farm Income: Empirical Evidence from Farm Households in Taiwan. Eur. Rev. Agric. Econ. 2020, 47, 1621–1643. [Google Scholar] [CrossRef]
- Sheng, Y.; Ding, J.; Huang, J. The Relationship between Farm Size and Productivity in Agriculture: Evidence from Maize Production in Northern China. Am. J. Agric. Econ. 2019, 101, 790–806. [Google Scholar] [CrossRef]
- Lee, B.; Liu, J.H.; Chang, H.H. The Choice of Marketing Channel and Farm Profitability: Empirical Evidence from Small Farmers. Agribusiness 2019, 36, 402–421. [Google Scholar] [CrossRef]
- 2010 Statistical Tables. Available online: https://eng.stat.gov.tw/ct.asp?xItem=37575&ctNode=1634&mp=5 (accessed on 28 October 2020).
- Lam, W.F. Institutional Design of Public Agencies and Coproduction: A Study of Irrigation Associations in Taiwan. World Dev. 1996, 24, 1039–1054. [Google Scholar] [CrossRef]
- History of Irrigation in Taiwan. Available online: http://doie.coa.gov.tw/upload/publish/20061003093717-B.pdf (accessed on 28 October 2020).
- Shih, D.S.; Chen, C.J.; Li, M.S.; Jang, C.S.; Chang, C.M.; Liao, Y.Y. Statistical and Numerical Assessments of Groundwater Resource Subject to Excessive Pumping: Case Study in Southwest Taiwan. Water 2019, 11, 360. [Google Scholar] [CrossRef] [Green Version]
- Loganathan, P.; Hedley, M.; Grace, N. Pasture Soils Contaminated with Fertilizer-Derived Cadmium and Fluorine: Livestock Effects. Rev. Environ. Contam. Toxicol. 2008, 192, 29–66. [Google Scholar] [PubMed]
- Balmford, B.; Green, R.; Onial, M.; Phalan, B.; Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 2018, 56, 13282. [Google Scholar] [CrossRef] [Green Version]
- Phalan, B. What Have We Learned from the Land Sparing-Sharing Model? Sustainability 2018, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
(A) | (B) | (C) | |||||
---|---|---|---|---|---|---|---|
Full Sample | Eligible | Non-Eligible | |||||
Variable | Definition | Mean | S.D. | Mean | S.D. | Mean | S.D. |
Dependent Variables | |||||||
R_production | Ratio of farmland in farm production. | 0.925 | 0.218 | 0.890 | 0.252 | 0.948 | 0.188 |
R_conservation | Ratio of farmland in conservation. | 0.006 | 0.065 | 0.004 | 0.054 | 0.007 | 0.071 |
R_others | Ratio of farmland in other purposes. | 0.069 | 0.210 | 0.106 | 0.248 | 0.045 | 0.176 |
R_fertilizer | Ratio of farmland with fertilizer use. | 0.725 | 0.453 | 0.778 | 0.424 | 0.647 | 0.483 |
R_water_irrigation | Ratio of farmland with irrigation water use. | 0.237 | 0.705 | 0.233 | 0.797 | 0.243 | 0.539 |
R_water_underground | Ratio of farmland with underground water use. | 0.350 | 0.531 | 0.365 | 0.559 | 0.328 | 0.487 |
R_water_other | Ratio of farmland with other water sources. | 0.855 | 2.157 | 0.779 | 2.283 | 0.968 | 1.951 |
Independent Variables | |||||||
Eligibility | If eligible to farm zoning program (=1). | 0.597 | 0.490 | 0 | - | 1 | - |
Children | Number of family member aged <15 years old (person). | 0.285 | 0.737 | 0.287 | 0.740 | 0.282 | 0.732 |
Adult | Number of family member aged ≥15 years old (person). | 3.102 | 1.632 | 3.122 | 1.633 | 3.073 | 1.629 |
OP_male | If farm operator is male (=1). | 0.760 | 0.427 | 0.771 | 0.420 | 0.743 | 0.437 |
OP_age | Age of the farm operator (years). | 63.074 | 11.962 | 62.860 | 11.944 | 63.391 | 11.982 |
OP_junior | If the operator finished junior high school (=1). | 0.227 | 0.419 | 0.229 | 0.420 | 0.225 | 0.418 |
OP_senior | If the operator finished senior high school (=1). | 0.250 | 0.433 | 0.257 | 0.437 | 0.240 | 0.427 |
OP_college | If operator has college degree or higher education (=1). | 0.094 | 0.291 | 0.093 | 0.290 | 0.095 | 0.294 |
Fruit | If a fruit farm (=1). | 0.502 | 0.500 | 0.560 | 0.496 | 0.414 | 0.493 |
N | Number of farm households | 183,600 | 109,661 | 73,939 |
(A) | (B) | (C) | ||||
---|---|---|---|---|---|---|
Farm Production | Conservation | Other Purposes | ||||
Variable | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. |
Eligibility | −0.022 *** | 0.003 | 0.000 | 0.001 | 0.023 *** | 0.003 |
Magnitude | −2.42% | −2.64% | 33.19% | |||
land-0.25 | 0.527 *** | 0.053 | 0.004 | 0.045 | −0.551 *** | 0.051 |
(land-0.25)2 | 1.291 *** | 0.254 | −0.310 | 0.492 | −1.203 *** | 0.244 |
(land-0.25) * Eligibility | −0.301 *** | 0.060 | 0.029 | 0.050 | 0.287 *** | 0.057 |
(land-0.25)2 * Eligibility | −2.292 *** | 0.276 | 0.257 | 0.534 | 2.297 *** | 0.265 |
Children | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 |
Adult | 0.000 | 0.000 | 0.000 *** | 0.000 | −0.001 ** | 0.000 |
OP_male | 0.002 ** | 0.001 | 0.000 | 0.000 | −0.002 ** | 0.001 |
OP_age | 0.000 *** | 0.000 | 0.000 *** | 0.000 | 0.000 *** | 0.000 |
OP_junior | 0.002 | 0.001 | 0.000 | 0.000 | −0.002 | 0.001 |
OP_senior | 0.001 | 0.001 | 0.001 * | 0.000 | −0.001 | 0.001 |
OP_college | −0.005 *** | 0.002 | 0.002 *** | 0.001 | 0.003 | 0.002 |
Fruit | 0.039 *** | 0.001 | -0.004 *** | 0.000 | −0.035 *** | 0.001 |
County FE | Yes | Yes | Yes | |||
Constant | 0.929 *** | 0.052 | 0.003 * | 0.002 | 0.068 *** | 0.005 |
Adjusted R2 | 0.244 | 0.121 | 0.244 | |||
N | 183,600 | 183,600 | 183,600 |
(A) | (B) | (C) | (D) | |||||
---|---|---|---|---|---|---|---|---|
R_fertilizer | R_water_irrigation | R_water_underground | R_water_other | |||||
Variable | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. |
Eligibility | 0.019 * | 0.008 | −0.017 * | 0.010 | 0.051 *** | 0.007 | −0.105 | 0.028 |
Magnitude | 2.64% | −7.33% | 14.58% | −12.24% | ||||
Other variables | Yes | Yes | Yes | Yes | ||||
Adjusted R2 | 0.125 | 0.183 | 0.190 | 0.147 | ||||
N | 183,600 | 183,600 | 183,600 | 183,600 |
Urban Sample | ||||||
---|---|---|---|---|---|---|
Farm Production | Conservation | Other Purposes | ||||
Variable | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. |
Eligibility | −0.026 *** | 0.004 | 0.000 | 0.002 | 0.027 *** | 0.004 |
Magnitude | −2.83% | 5.33% | 31.93% | |||
Other variables | Yes | Yes | Yes | |||
Adjusted R2 | 0.249 | 0.141 | 0.247 | |||
N | 96,291 | 96,291 | 96,291 | |||
Rural Sample | ||||||
Variable | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. |
Eligibility | −0.019 *** | 0.004 | −0.001 | 0.002 | 0.009 *** | 0.004 |
Magnitude | −2.00% | −18.37% | 16.99% | |||
Other variables | Yes | Yes | Yes | |||
Adjusted R2 | 0.178 | 0.091 | 0.230 | |||
N | 87,309 | 87,309 | 87,309 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-H.; Lee, B.; Su, Y.-J.; Chang, H.-H. Are There Any Undesired Effects of Anti-Land Fragmentation Programs on Farm Production Practices and Farm Input Use? Land 2021, 10, 138. https://doi.org/10.3390/land10020138
Lee T-H, Lee B, Su Y-J, Chang H-H. Are There Any Undesired Effects of Anti-Land Fragmentation Programs on Farm Production Practices and Farm Input Use? Land. 2021; 10(2):138. https://doi.org/10.3390/land10020138
Chicago/Turabian StyleLee, Tzong-Haw, Brian Lee, Yi-Ju Su, and Hung-Hao Chang. 2021. "Are There Any Undesired Effects of Anti-Land Fragmentation Programs on Farm Production Practices and Farm Input Use?" Land 10, no. 2: 138. https://doi.org/10.3390/land10020138