Linking Greenspace Ecological Networks Optimization into Urban Expansion Planning: Insights from China’s Total Built Land Control Policy
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source and Processing
3. Methodology
3.1. Greenspace Ecological Networks (GENs) Establishment and Encroachment Identification
3.1.1. Greenspace Ecological Networks (GENs) Establishment Based on MSPA and LCPs
3.1.2. Encroachment Identification Based on Circuit Theory and Buffer Analysis
3.2. Scenarios of Urban Expansion Simulation
3.2.1. Scenario Settings
3.2.2. Urban Expansion Simulation Using a CA-Based FLUS Model
4. Results
4.1. Greenspace Ecological Networks (GENs) Establishment and Encroachment Identification
4.1.1. GENs Establishment
4.1.2. Encroachment Identification and Analysis
4.2. Scenarios of Urban Expansion Simulation
4.3. Landscape Metric Calculation Results
5. Discussion
5.1. The Importance of Land Transformation
5.2. Scenario Settings of Urban Expansion Simulation
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LULC | Description |
---|---|
Paddy land | Refers to the cultivated land with guaranteed water sources and irrigation facilities, which can be irrigated normally in normal years for the cultivation of aquatic crops such as rice and lotus root. |
Dry land | Cultivated land without irrigation sources or facilities and dependent on natural precipitation to grow crops; or cultivated land with water and irrigation facilities that can be irrigated normally in normal times of the year; and is mainly for growing vegetables |
Forest | Refers to land that that dominated by arbor forest, shrub forest, bamboos, and mangrove. |
Grassland | Refers to the land that dominated by herbaceous plants, with a coverage ≥ of 5% |
Waterbody | Includes rivers, lakes, ponds, channels. |
Urban land | Belongs to built land, and means the built-up areas within a city, county, and town. |
Rural land | Belongs to built land, and means the settlement areas in a village. |
Industrial land | Belongs to built land, particularly refers to land for industrial areas, quarries, oil fields, salt works, and quarries, as well as traffic roads, airports, docks, which isolate with residential areas at all levels. |
Wetland | Includes river, lake, and sea beach, as well as marshland. |
Bare land | Refers to the land covered by soil, rocks, sand, and gravel, with vegetation coverage < of 5% |
Unused land | Includes Saline-alkali land and wilderness. |
Built land | Refers the general term of urban land, rural land (settlements), and industrial land. |
References
- Kuang, W.; Du, G.; Lu, D.; Dou, Y.; Li, X.; Zhang, S.; Chi, W.; Dong, J.; Chen, G.; Yin, Z.; et al. Global observation of urban expansion and land-cover dynamics using satellite big-data. Sci. Bull. 2021, 66, 297–300. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X.; Wu, Y.; Shen, J.; Shen, L.; Xing, X. Urban land expansion and the floating population in China: For production or for living? Cities 2018, 74, 219–228. [Google Scholar] [CrossRef]
- Asabere, S.B.; Acheampong, R.A.; Ashiagbor, G.; Beckers, S.C.; Keck, M.; Erasmi, S.; Schanze, J.; Sauer, D. Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy 2020, 96, 104707. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Liu, Y. Urban ecological corridors construction: A review. Acta Ecol. Sin. 2017, 37, 23–30. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Gu, X. Reduction of industrial land beyond Urban Development Boundary in Shanghai: Differences in policy responses and impact on towns and villages. Land Use Policy 2019, 82, 620–630. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D.; Mao, H.; Bao, C.; Huang, J. Optimization Goals and Keys for the Spatial Pattern of China’s Urban Development. In China’s Urban Pattern; Fang, C., Yu, D., Mao, H., Bao, C., Huang, J., Eds.; Springer: Singapore, 2018; pp. 173–232. [Google Scholar]
- Ministry of Land and Resources. Guidelines on Promoting the Economical and Intensive Use of Land. Ministry of Land and Resources. Available online: http://www.gov.cn/xinwen/2014-09/26/content_2756852.htm (accessed on 15 May 2021).
- Wang, J.; Li, Y.R.; Wang, Q.Y.; Cheong, K.C. Urban-Rural Construction Land Replacement for More Sustainable Land Use and Regional Development in China: Policies and Practices. Land 2019, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Tian, G.; Kong, L.; Liu, X. How China’s linked urban–rural construction land policy impacts rural landscape patterns: A simulation study in Tianjin, China. Landsc. Ecol. 2018, 33, 1417–1434. [Google Scholar] [CrossRef]
- Fang, L.; Tian, C. Construction land quotas as a tool for managing urban expansion. Landsc. Urban Plan. 2020, 195, 103727. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Chen, Z.J.; Cheng, Q.W.; Zhou, C.; Jiang, P.H.; Li, M.C.; Chen, D. Quota Restrictions on Land Use for Decelerating Urban Sprawl of Mega City: A Case Study of Shanghai, China. Sustainability 2016, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, Q.; Yan, S.Q.; Guo, G.C.; Peng, S.G. China’s local local governments breaking the land use planning quota: A strategic interaction perspective. Land Use Policy 2020, 92, 15. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Zhang, M.; Li, S. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2020, 286, 125523. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K.H.; Iwanowski, M.; Estreguil, C.; Kozak, J.; Soille, P. Mapping landscape corridors. Ecol. Indic. 2007, 7, 481–488. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Zhang, J.; Wu, X.; Jia, M.; Wu, L. Built-up land expansion and its impacts on optimizing green infrastructure networks in a resource-dependent city. Sustain. Cities Soc. 2020, 55, 102026. [Google Scholar] [CrossRef]
- Wanghe, K.; Guo, X.; Wang, M.; Zhuang, H.; Ahmad, S.; Khan, T.U.; Xiao, Y.; Luan, X.; Li, K. Gravity model toolbox: An automated and open-source ArcGIS tool to build and prioritize ecological corridors in urban landscapes. Glob. Ecol. Conserv. 2020, 22, e01012. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Kong, F.; Wang, D.; Yin, H.; Dronova, I.; Fei, F.; Chen, J.; Pu, Y.; Li, M. Coupling urban 3-D information and circuit theory to advance the development of urban ecological networks. Conserv. Biol. 2021, 35, 1140–1150. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Teng, M.; Wu, C.; Zhou, Z.; Lord, E.; Zheng, Z. Multipurpose greenway planning for changing cities: A framework integrating priorities and a least-cost path model. Landsc. Urban Plan. 2011, 103, 1–14. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Tang, G. Identification of urban flight corridors for migratory birds in the coastal regions of Shenzhen city based on three-dimensional landscapes. Landsc. Ecol. 2020, 36, 2043–2057. [Google Scholar] [CrossRef]
- Hu, R.; Gu, Y.; Luo, M.; Lu, Z.; Wei, M.; Zhong, J. Shifts in bird ranges and conservation priorities in China under climate change. PLoS ONE 2020, 15. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Wang, Y.; Liu, D.; Xia, C.; Wang, Z.; Wang, H.; Liu, Y. Urban expansion simulation towards low-carbon development: A case study of Wuhan, China. Sustain. Cities Soc. 2020, 63, 102455. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X.; Fu, Y.; Lu, Z.; Shen, X. Urban spatial growth modeling using logistic regression and cellular automata: A case study of Hangzhou. Ecol. Indic. 2020, 113, 106200. [Google Scholar] [CrossRef]
- Siddiqui, A.; Siddiqui, A.; Maithani, S.; Jha, A.K.; Kumar, P.; Srivastav, S.K. Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egypt. J. Remote Sens. Space Sci. 2018, 21, 229–236. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Huang, D.Q.; Huang, J.; Liu, T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Li, H.; Li, D.; Li, T.; Qiao, Q.; Yang, J.; Zhang, H. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake—Case study of Wolong Nature Reserve in China. Ecol. Model. 2010, 221, 944–952. [Google Scholar] [CrossRef]
- Ersoy, E.; Jorgensen, A.; Warren, P.H. Identifying multispecies connectivity corridors and the spatial pattern of the landscape. Urban For. Urban Green. 2018, 40, 308–322. [Google Scholar] [CrossRef]
- Su, K.; Yu, Q.; Yue, D.; Zhang, Q.; Yang, L.; Liu, Z.; Niu, T.; Sun, X. Simulation of a forest-grass ecological network in a typical desert oasis based on multiple scenes. Ecol. Model. 2019, 413, 108834. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B.; et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2018, 33, 239–249. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.C.; Wu, W.J.; Guo, J.; Ou, M.H.; Pueppke, S.G.; Ou, W.X.; Tao, Y. An evaluation framework for designing ecological security patterns and prioritizing ecological corridors: Application in Jiangsu Province, China. Landsc. Ecol. 2020, 35, 2517–2534. [Google Scholar] [CrossRef]
- King, D.I.; Chandler, R.B.; Collins, J.M.; Petersen, W.R.; Lautzenheiser, T.E. Effects of width, edge and habitat on the abundance and nesting success of scrub–shrub birds in powerline corridors. Biol. Conserv. 2009, 142, 2672–2680. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X.; Zhang, X.; Li, H. The incremental construction land differentiated management framework: The perspective of land quota trading in China. Land Use Policy 2020, 96, 104675. [Google Scholar] [CrossRef]
- He, Q.; Tan, S.; Yin, C.; Zhou, M. Collaborative optimization of rural residential land consolidation and urban construction land expansion: A case study of Huangpi in Wuhan, China. Comput. Environ. Urban Syst. 2019, 74, 218–228. [Google Scholar] [CrossRef]
- Wang, X.G.; Su, F.Z.; Zhang, J.J.; Cheng, F.; Hu, W.Q.; Ding, Z. Construction land sprawl and reclamation in the Johor River Estuary of Malaysia since 1973. Ocean Coast. Manag. 2019, 171, 87–95. [Google Scholar] [CrossRef]
- Wei, Y.H.D.; Li, H.; Yue, W.Z. Urban land expansion and regional inequality in transitional China. Landsc. Urban Plan. 2017, 163, 17–31. [Google Scholar] [CrossRef]
- He, S.; Bayrak, M.M.; Lin, H. A comparative analysis of multi-scalar regional inequality in China. Geoforum 2017, 78, 1–11. [Google Scholar] [CrossRef]
- Li, G.; Li, F. Urban sprawl in China: Differences and socioeconomic drivers. Sci. Total Environ. 2019, 673, 367–377. [Google Scholar] [CrossRef]
- Li, C.; Li, J.X.; Wu, J.G. What drives urban growth in China? A multi-scale comparative analysis. Appl. Geogr. 2018, 98, 43–51. [Google Scholar] [CrossRef]
- Jin, W.F.; Zhou, C.S.; Liu, T.; Zhang, G.J. Exploring the factors affecting regional land development patterns at different developmental stages: Evidence from 289 Chinese cities. Cities 2019, 91, 193–201. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, A.W.; He, L.J.; Zhou, Z.G.; Yuan, M.X. Spatiotemporal Dynamics and Driving Forces of Urban Land-Use Expansion: A Case Study of the Yangtze River Economic Belt, China. Remote Sens. 2020, 12, 287. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China. Ecol. Indic. 2020, 119, 106841. [Google Scholar] [CrossRef]
- Long, Y.; Jin, X.; Yang, X.; Zhou, Y. Reconstruction of historical arable land use patterns using constrained cellular automata: A case study of Jiangsu, China. Appl. Geogr. 2014, 52, 67–77. [Google Scholar] [CrossRef]
- Mustafa, A.; Heppenstall, A.; Omrani, H.; Saadi, I.; Cools, M.; Teller, J. Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Comput. Environ. Urban Syst. 2018, 67, 147–156. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2020, 36, 2059–2076. [Google Scholar] [CrossRef]
- Stokstad, E. Global efforts to protect biodiversity fall short. Science 2020, 369, 1418. [Google Scholar] [CrossRef]
- Paloniemi, R.; Hujala, T.; Rantala, S.; Harlio, A.; Salomaa, A.; Primmer, E.; Pynnonen, S.; Arponen, A. Integrating Social and Ecological Knowledge for Targeting Voluntary Biodiversity Conservation. Conserv. Lett. 2017, 11, e12340. [Google Scholar] [CrossRef]
- Mander, Ü.; Helming, K.; Wiggering, H. Multifunctional Land Use: Meeting Future Demands for Landscape Goods and Services; Mander, Ü., Wiggering, H., Helming, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–13. [Google Scholar]
- Otte, A.; Simmering, D.; Wolters, V. Biodiversity at the landscape level: Recent concepts and perspectives for multifunctional land use. Landsc. Ecol. 2007, 22, 639–642. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. A research framework of land use transition in Suzhou City coupled with land use structure and landscape multifunctionality. Sci. Total Environ. 2020, 737, 139932. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Fagerholm, N.; Eilola, S.; Kisanga, D.; Arki, V.; Käyhkö, N. Place-based landscape services and potential of participatory spatial planning in multifunctional rural landscapes in Southern highlands, Tanzania. Landsc. Ecol. 2019, 34, 1769–1787. [Google Scholar] [CrossRef] [Green Version]
- Paracchini, M.L.; Pacini, C.; Jones, M.L.M.; Pérez-Soba, M. An aggregation framework to link indicators associated with multifunctional land use to the stakeholder evaluation of policy options. Ecol. Indic. 2011, 11, 71–80. [Google Scholar] [CrossRef]
- Shi, W.; Woolley, H. Managing for Multifunctionality in Urban Open Spaces: Approaches for Sustainable Development. J. Urban Manag. 2014, 3, 3–21. [Google Scholar] [CrossRef]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 2018, 38, 305–317. [Google Scholar] [CrossRef]
Data | Sources | Description |
---|---|---|
Land use and land cover (2015 and 2018) | Resource and environment science and data center of China (https://www.resdc.cn/), accessed on 28 July 2021. | Raster, 30 m × 30 m |
Digital Elevation Model (DEM) | Geospatial Data Cloud (China) (https://www.giscloud.cn/), accessed on 28 July 2021. | Raster, 30 m × 30 m |
Normalized differential vegetation index (NDVI) | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn), accessed on 5 August 2021. | Raster, 250 m × 250 m |
Main roads (2018) | OpenStreetMap:http://www.openstreetmap.org/, accessed on 6 August 2021 | Vector |
Socioeconomic data (2018) | Statistical Yearbook of Jiangsu Province, in particular, cities of Suzhou, Wuxi, Changzhou. | Text |
Factors | Classification | Resistance Value | Weight |
---|---|---|---|
Land use and land cover | Urban, Rural and Industrial land | 9 | 0.42 |
Bare land, Unused land | 7 | ||
Paddy land, Dry land | 5 | ||
Grassland | 3 | ||
Forest, Wetland, Waterbody | 1 | ||
Distance to main roads | 0–90 m | 9 | 0.25 |
90 m–180 m | 7 | ||
180 m–270 m | 5 | ||
270 m–360 m | 3 | ||
360 m≤ | 1 | ||
Elevation | 400 m≤ | 9 | 0.08 |
200 m–400 m | 7 | ||
100 m–200 m | 5 | ||
50 m–100 m | 3 | ||
<50 m | 1 | ||
Normalized differential vegetation index (NDVI) | <0.1 | 9 | 0.25 |
0.1–0.3 | 7 | ||
0.3–0.6 | 5 | ||
0.6–0.8 | 3 | ||
0.8≤ | 1 |
City | Districts | Scenario A | Scenario B | Scenario C | Scenario D |
---|---|---|---|---|---|
Suzhou | Changshu | 1.68 | 2.05 | 0.75 | 0.17 |
Gusu | 0.19 | 0.35 | 0.17 | 0.29 | |
Huqiu | 0.42 | 0.66 | 0.54 | 0.57 | |
Industrial park | 0.43 | 1.72 | 0.29 | 1.69 | |
Kunshan | 1.58 | 0.20 | 0.74 | 0.08 | |
Wujiang | 1.48 | 3.33 | 0.24 | 0.02 | |
Wuzhong | 0.81 | 0.15 | 0.35 | 0.25 | |
Xiangcheng | 1.13 | 2.26 | 0.78 | 1.76 | |
Taicang | 0.90 | 1.23 | 0.16 | 0.02 | |
Zhangjiagang | 3.23 | 2.27 | 0.88 | 0.05 | |
Subtotal | 11.86 | 14.23 | 4.89 | 4.89 | |
Wuxi | Binhu | 0.67 | 1.32 | 1.60 | 1.16 |
Huishan | 2.48 | 0.60 | 0.38 | 2.29 | |
Jiangyin | 4.29 | 2.84 | 4.15 | 2.71 | |
Liangxi | 0.18 | 0.26 | 0.28 | 0.50 | |
Xishan | 1.37 | 0.03 | 0.21 | 2.37 | |
Xinwu | 0.81 | 0.19 | 0.78 | 1.23 | |
Yixing | 0.92 | 0.93 | 3.69 | 0.83 | |
Subtotal | 10.72 | 6.17 | 11.10 | 11.10 | |
Changzhou | Jintan | 0.23 | 1.17 | 0.51 | 1.23 |
Liyang | 0.39 | 1.46 | 1.20 | 1.86 | |
Tianning | 0.34 | 0.51 | 0.32 | 0.45 | |
Wujin | 2.95 | 3.48 | 3.51 | 4.48 | |
Xinbei | 1.34 | 1.07 | 5.28 | 3.19 | |
Zhonglou | 0.65 | 0.39 | 1.67 | 1.28 | |
Subtotal | 5.89 | 8.08 | 12.49 | 12.49 | |
Total | 28.48 | 28.48 | 28.48 | 28.48 |
Landscape Metrics | The Original | Scenario A | Scenario B | Scenario C | Scenario D |
---|---|---|---|---|---|
Percentage of Landscape (PLAND) | 16.9288 | 17.0901 | 17.0901 | 17.0901 | 17.0901 |
Number of Patches (NP) | 285 | 280 | 282 | 283 | 282 |
Patch Density (PD) | 0.0161 | 0.0159 | 0.0160 | 0.0160 | 0.0160 |
Largest Patch Index (LPI) | 4.6782 | 4.7012 | 4.7127 | 4.6923 | 4.7016 |
Landscape Shape Index (LSI) | 37.3306 | 37.9681 | 37.7011 | 37.7035 | 37.7510 |
Mean Patch Area Distribution (AREA_MN) | 1049.0097 | 1077.9133 | 1070.2685 | 1066.4866 | 1070.2685 |
Mean Shape Index Distribution (SHAPE_MN) | 2.1542 | 2.1850 | 2.1725 | 2.1683 | 2.1725 |
Fractal Dimension Index (FRAC_MN) | 1.0897 | 1.0907 | 1.0902 | 1.0904 | 1.0905 |
Mean Contiguity Index Distribution (CONTIG_MN) | 0.638 | 0.6411 | 0.6394 | 0.6411 | 0.6389 |
Mean Proximity Index (PROX_MN) | 2112.7455 | 2139.9096 | 2140.1828 | 2177.2798 | 2101.7573 |
Aggregation Index (AI) | 94.0055 | 93.9331 | 93.9769 | 93.9765 | 93.9687 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Wu, W.; Chen, M.; Tian, S.; Wang, J. Linking Greenspace Ecological Networks Optimization into Urban Expansion Planning: Insights from China’s Total Built Land Control Policy. Land 2021, 10, 1046. https://doi.org/10.3390/land10101046
Shen Z, Wu W, Chen M, Tian S, Wang J. Linking Greenspace Ecological Networks Optimization into Urban Expansion Planning: Insights from China’s Total Built Land Control Policy. Land. 2021; 10(10):1046. https://doi.org/10.3390/land10101046
Chicago/Turabian StyleShen, Zhou, Wei Wu, Ming Chen, Shiqi Tian, and Jiao Wang. 2021. "Linking Greenspace Ecological Networks Optimization into Urban Expansion Planning: Insights from China’s Total Built Land Control Policy" Land 10, no. 10: 1046. https://doi.org/10.3390/land10101046
APA StyleShen, Z., Wu, W., Chen, M., Tian, S., & Wang, J. (2021). Linking Greenspace Ecological Networks Optimization into Urban Expansion Planning: Insights from China’s Total Built Land Control Policy. Land, 10(10), 1046. https://doi.org/10.3390/land10101046