# Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Development of the SWMM Toolkit

## 3. Validation Protocol

#### 3.1. Velocity Tests

#### 3.2. Function Validation

- Storage Units: invert level, height (maximum depth) y and volume. Regarding the volume, it is defined by a function which relates depth and surface area through three parameters: A, B and C. The surface area of the storage unit varies with water depth following the function shown below:$$S=A\cdot {y}^{B}+C$$
- Junctions: invert level and maximum depth.
- Conduits: diameter, invert levels at entrance and exit, and roughness coefficient. Furthermore, other tests were made in order to modify geometric shape and the corresponding geometric parameters. The latter tests were no so exhaustive as long as not all geometric shapes were tested.

## 4. Application

- Pipeline depth, Δz. It will be defined by the design algorithm.
- Trench lateral slope, S
_{t}. For this case study, this slope is considered constant and equal to 0.2 m/m. - Base width (b
_{0}). It is equal to pipe diameter plus 50 cm. - Bedding thickness (h
_{0}), also constant and equal to 15 cm. - Selected sidefill height (h
_{R}), measured from conduit crown level. Again, it is constant and equal to 30 cm. - Pipeline charge angle α. It indicates pipeline portion in contact with bedding. In this case, it is equal to 90°.
- Ground elevation, z
_{1} - Invert elevation, z
_{0}

_{0}and z

_{1}represent the invert and the ground elevations, respectively. The latter is calculated in the algorithm for all nodes with the exception of the outfall node D-1 for which z

_{0}= 2.5 m. Therefore, using these values and pipe diameters it is possible to calculate the rest of the geometrical parameters of the trench.

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- James, W.; Huber, W.C.; Dickinson, R.E.; Pitt, R.E.; James, W.R.C.; Roesner, L.A.; Aldrich, J.A. User’s Guide to SWMM5-CHI Publications, 13th ed.; CHI Water: Guelph, ON, Canada, 2011. [Google Scholar]
- Mays, L.W.; Yen, B.C. Optimal Cost Designof Branched Sewer Systems. Water Resour. Res.
**1975**, 11, 37–47. [Google Scholar] [CrossRef] - Elimam, A.A.; Charalambous, C.; Ghobrial, F.H. Optimum design of large sewer networks. J. Environ. Eng.
**1990**, 115, 1171–1190. [Google Scholar] [CrossRef] - Van Nooijen, R.R.; Kolechkina, A. Speed of discrete optimization solvers for real time sewer control. Urban Water J.
**2013**, 10, 354–363. [Google Scholar] [CrossRef] - Banik, B.K.; Di Cristo, C.; Leopardi, A. SWMM5 Toolkit Development for Pollution Source Identification in Sewer Systems. Procedia Eng.
**2014**, 89, 750–757. [Google Scholar] [CrossRef] - Meredith, D.D. Chapter 9: Dynamic programming concepts and applications. In Treatise on Urban Water Systems; Colorado State University: Port Collins, CO, USA, 1971; pp. 599–652. [Google Scholar]
- Moeini, R.; Afshar, M.H. Constrained Ant Colony Optimisation Algorithm for the layout and size optimisation of sanitary sewer networks. Urban Water J.
**2013**, 10, 154–173. [Google Scholar] [CrossRef] - Krebs, G.; Kokkonen, T.; Valtanen, M.; Koivusalo, H.; Setälä, H. A high resolution application of a stormwater management model (SWMM) using genetic parameter optimization. Urban Water J.
**2013**, 10, 394–410. [Google Scholar] [CrossRef] - Rossman, L.A. Epanet 2 Users Manual; U.S. Environmental Protection Agency: Cincinnaty, OH, USA, 2000.
- Kandiah, V.; Jasper, M.; Drake, K.; Shafiee, M.E.; Barandouzi, M.; Berglund, D.; Brill, E.D.; Mahinthakumar, G.; Ranjithan, S.; Zechman, E. Population-Based Search Enabled by High Performance Computing for BWN-II Design. In Proceedings of the 14th Annual Conference on Water Distribution Systems Analysis, Adelaide, Australia, 24–27 September 2012.
- Guidolin, M.; Burovskiy, P.; Kapelan, Z.; Savić, D.A. CWSNET: An Object-Oriented Toolkit for Water Distribution System Simulations. In Proceedings of the 12th Annual Conference on Water Distribution Systems Analysis, Tucson, AZ, USA, 12–15 September 2010.
- Savić, D.; Bicik, J.; Morley, M.S. A DSS generator for multiobjective optimisation of spreadsheet-based models. Environ. Model. Softw.
**2011**, 26, 551–561. [Google Scholar] [CrossRef] [Green Version] - Marchi, A.; Simpson, A.R. Correction of the EPANET Inaccuracy in Computing the Efficiency of Variable Speed Pumps. J. Water Resour. Plan. Manag.
**2013**, 139, 456–459. [Google Scholar] [CrossRef] - Rossman, L.A. Storm Water Management Model User’s Manual; U.S. Environmental Protection Agency: Cincinnaty, OH, USA, 2015.
- Huber, W.C.; Dickinson, R.E. Stormwater Management Model (SWMM) User’s Manual, Version 4.0; Environmental Research Laboratory, U.S. Environmental Protection Agency: Athens, GA, USA, 1988.
- Chan, C.C.; Dickinson, R.E.; Burgess, E. Runtime Comparisons between SWMM 4 and SWMM 5 using Continuous Simulation Model Networks. J. Water Manag. Model.
**2005**, 223, 193–202. [Google Scholar] - Rossman, L.A. Storm Water Management Model Quality Assurance Report: Dynamic Wave Flow Routing; U.S. Environmental Protection Agency: Cincinnaty, OH, USA, 2006.
- Schade, T.; Wagner, T. Quality Assurance Project Plan SWMM Redevelopment; National Risk Management Research Laboratory, U.S. Environmental Protection Agency: Cincinnaty, OH, USA, 2002.
- Rossman, L.A.; Dickinson, R.; Schade, T.; Chan, C.; Burgess, E.H.; Sullivan, D.; Lai, D. SWMM 5-the Next Generation of EPA’s Storm Water Management Model. J. Water Manag. Model.
**2004**. [Google Scholar] [CrossRef] - Yazdi, J.; Sadollah, A.; Lee, E.H.; Yoo, D.G.; Kim, J.H. Application of multi-objective evolutionary algorithms for the rehabilitation of storm sewer pipe networks. J. Flood Risk Manag.
**2015**. [Google Scholar] [CrossRef] - Mays, L.W.; Wenzel, H.G.J. Optimal Design of Multilevel Branching Sewer Systems. Water Resour. Res.
**1976**, 12, 913–917. [Google Scholar] [CrossRef] - Afshar, M.H.; Rohani, M. Optimal design of sewer networks using cellular automata-based hybrid methods: Discrete and continuous approaches. Eng. Optim.
**2012**, 44, 1–22. [Google Scholar] [CrossRef] - Cozzolino, L.; Cimorelli, L.; Covelli, C.; Mucherino, C.; Pianese, D. An Innovative Approach for Drainage Network Sizing. Water
**2015**, 7, 546–567. [Google Scholar] [CrossRef] - Messner, F.; Meyer, V. Flood damage, vulnerability and risk perception-challenges for flood research. In Flood Risk Management: Hazards, Vulnerability and Mitigation Measures; Schanze, J., Zeman, E., Marsalek, J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2006; pp. 149–167. [Google Scholar]
- Guo, Y.F.; Walters, G.A.; Khu, S.T.; Keedwell, E.C. Efficient Multiobjective Storm Sewer Design Using Cellular Automata and Genetic Algorithm Hybrid. J. Water Resour. Plan. Manag.
**2008**, 134, 511–515. [Google Scholar] [CrossRef] - Mora-Melia, D.; Iglesias-Rey, P.L.; Martinez-Solano, F.J.; Fuertes-Miquel, V.S. Design of Water Distribution Networks using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators. Water Resour. Manag.
**2013**, 27, 4149–4162. [Google Scholar] [CrossRef] - Mora-Meliá, D.; Iglesias-Rey, P.L.; Fuertes-Miquel, V.S.; Martinez-Solano, F.J. Comparison of evolutionary algorithms for design of sewer systems. In Environmental Hydraulics: Theoretical, Experimental and Computational Solutions; CRC Press/Balkema: London, UK, 2010; pp. 261–263. [Google Scholar]
- Mora-Melia, D.; Iglesias-Rey, P.L.; Martinez-Solano, F.J.; Ballesteros-Pérez, P. Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resour. Manag.
**2015**, 29, 4817–4831. [Google Scholar] [CrossRef] - Elbeltagi, E.; Hegazy, T.; Grierson, D. Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inf.
**2005**, 19, 43–53. [Google Scholar] [CrossRef]

**Figure 2.**Comparison scheme of optimization algorithm performance using EPA SWMM 5 (

**a**) and the Toolkit (

**b**).

Function Name | Description |
---|---|

Group 1. Project management functions (already available in EPA SWMM) | |

swmm_getVersion | Retrieves the version number of SWMM engine |

swmm_run | Runs a complete simulation with SWMM |

swmm_open | Opens the project for a new execution |

swmm_start | Initializes SWMM engine |

swmm_step | Executes next time step |

swmm_end | Ends the SWMM engine when the simulation has ended |

swmm_getMassBalErr | Retrieves the continuity errors when the simulation has ended |

swmm_report | Writes results in text format in the report file |

swmm_close | Closes the project when the simulation has ended |

Group 2. Get functions | |

swmm_getCount | Retrieves the number of elements of the specified type |

swmm_getNodeIndex | Gets the index of a node from its identifier |

swmm_getNodeId | Gets the identifier of a node from its index |

swmm_getLinkIndex | Gets the index of a link from its identifier |

swmm_getLinkId | Gets the identifier of a link from its index |

swmm_getNodeType | Retrieves the type of a node from its index |

swmm_getLinkType | Retrieves the type of a link from its index |

swmm_getNodeValue | Retrieves the value of a specified parameter of a node from its index |

swmm_getLinkValue | Retrieves the value of a specified parameter of a link from its index |

swmm_getLinkNodes | – |

Group 3. Set functions | |

swmm_setNodeValue | Sets the value of a specified parameter of a node from its index |

swmm_setLinkValue | Sets the value of a specified parameter of a link from its index |

swmm_setLinkGeom | Sets the geometry parameters of a link |

Case | Case 1 Rain (6 h) | Case 2 Rain (October 2000) | Case 3 Direct Inflows | |
---|---|---|---|---|

Net 1 | EPA SWMM | 610 | 20,791 | 470 |

Toolkit | 460 | 20,775 | 430 | |

Net 2 | EPA SWMM | 6731 | 313,803 | 4441 |

Toolkit | 4460 | 300,704 | 4280 | |

Net 3 | EPA SWMM | 598,329 | 5,438,193 | 144,220 |

Toolkit | 135,549 | 4,935,524 | 126,308 |

Diameter (mm) | Cost (€/m) |
---|---|

400 | 96.33 € |

500 | 116.78 € |

600 | 159.19 € |

700 | 208.21 € |

800 | 254.26 € |

900 | 312.60 € |

1000 | 319.36 € |

1200 | 442.21 € |

1400 | 575.64 € |

1600 | 728.31 € |

1800 | 858.91 € |

2000 | 1,055.72 € |

Material/Operation | Cost (€/m^{3}) |
---|---|

Excavation costs ${C}_{1}$ | 14.21 € |

Granular material costs ${C}_{2}$ | 13.97 € |

Selected sidefill costs ${C}_{3}$ | 6.47 € |

Non selected sidefill ${C}_{4}$ | 4.55 € |

Transport costs ${C}_{5}$ | 3.19 € |

Final costs (deposition) ${C}_{6}$ | 20.30 € |

Algorithm | PGA | PSO |
---|---|---|

Best solution | 290,441.68 € | 287,518.02 € |

Average number of simulations | 771 | 1670 |

Rate of success | 37.1% | 32.6% |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Saldarriaga, J.G.; Vallejo, D.
Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. *Water* **2016**, *8*, 259.
https://doi.org/10.3390/w8060259

**AMA Style**

Martínez-Solano FJ, Iglesias-Rey PL, Saldarriaga JG, Vallejo D.
Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. *Water*. 2016; 8(6):259.
https://doi.org/10.3390/w8060259

**Chicago/Turabian Style**

Martínez-Solano, F. Javier, Pedro L. Iglesias-Rey, Juan G. Saldarriaga, and Daniel Vallejo.
2016. "Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization" *Water* 8, no. 6: 259.
https://doi.org/10.3390/w8060259