Automated Method for Monitoring Water Quality Using Landsat Imagery
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. Datasets
3.1.1. BUMP Water Quality Samples
3.1.2. Remote Sensing Imagery
3.2. Image Processing Methodology
3.2.1. Step 1: Value Extraction and Image Subsetting
3.2.2. Step 2: Radiometric and Atmospheric Correction
3.3. Cloud Mask
3.4. Water Mask
3.4.1. Step 3: Data Extraction
3.4.2. Step 4: Statistical Analysis
4. Results and Discussion
4.1. Processing Methodology and Code
4.2. Case Study Results
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- EPA. Summary of the Clean Water Act. Available online: http://www2.epa.gov/laws-regulations/summary-clean-water-act (accessed on 12 June 2016).
- Bukata, R.P. Optical Properties and Remote Sensing of Inland and Coastal Waters; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- EPA. TMDL Development for Lakes Eucha and Spavinaw in Oklahoma. Available online: http://www.epa.gov/waters/tmdldocs/2Eucha_Spavinaw_TMDL_TP_%20Apr_10.pdf (accessed on 12 June 2016).
- Goldman, C.R.; Richards, R.C.; Paerl, H.W.; Wrigley, R.C.; Oberbeck, V.R.; Quaide, W.L. Limnological studies and remote sensing of the Upper Truckee River sediment plume in Lake Tahoe, California-Nevada. Remote Sens. Environ. 1974, 3, 49–67. [Google Scholar] [CrossRef]
- Allan, M.G.; Hamilton, D.P.; Hicks, B.J.; Brabyn, L. Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. Int. J. Remote Sens. 2011, 32, 2037–2055. [Google Scholar] [CrossRef]
- Carpenter, S.M.; Carpenter, D.J. Modeling inland water quality using Landsat data. Remote Sens. Environ. 1983, 13, 345–352. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 2002, 23, 15–35. [Google Scholar] [CrossRef]
- Guneroglu, A.; Karsli, F.; Dihkan, M. Automatic detection of coastal plumes using Landsat TM/ETM+ images. Int. J. Remote Sens. 2013, 34, 4702–4714. [Google Scholar] [CrossRef]
- Harrington, J.A.; Schiebe, F.R.; Nix, J.F. Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data. Remote Sens. Environ. 1992, 39, 15–27. [Google Scholar] [CrossRef]
- Hicks, B.; Stichbury, G.; Brabyn, L.; Allan, M.; Ashraf, S. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environ. Monit. Assess. 2013, 185, 7245–7261. [Google Scholar] [CrossRef] [PubMed]
- Jiazhu, G.J.W.Y.H. A model for the retrieval of suspended sediment concentrations in Taihu Lake from TM images. J. Geogr. Sci. 2006, 16, 458–464. [Google Scholar]
- Kloiber, S.M.; Brezonik, P.L.; Bauer, M.E. Application of Landsat imagery to regional-scale assessments of lake clarity. Water Res. 2002, 36, 4330–4340. [Google Scholar] [CrossRef]
- McCullough, I.M.; Loftin, C.S.; Sader, S.A. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sens. Environ. 2012, 123, 109–115. [Google Scholar] [CrossRef]
- Nas, B.; Ekercin, S.; Karabork, H.; Berktay, A.; Mulla, D.J. An application of Landsat-5TM image data for water quality mapping in Lake Beysehir, Turkey. Water Air Soil Pollut. 2010, 212, 183–197. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Onderka, M.; Rodný, M. Can suspended sediment concentrations be estimated from multispectral imagery using only image-derived information? J. Indian Soc. Remote Sens. 2010, 38, 85–97. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Cooper, C.M.; Schiebe, F.R. The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sens. Environ. 1990, 33, 137–148. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Cooper, C.M.; Yongqing, J. Using Landsat multispectral scanner data to estimate suspended sediments in Moon Lake, Mississippi. Remote Sens. Environ. 1987, 23, 65–81. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Schiebe, F.R.; Cooper, C.M. Landsat digital data for estimating suspended sediment in inland water. Int. Assoc. Hydrol. Sci. Publ. 1989, 151–158. [Google Scholar]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Schalles, J.F.; Rundquist, D.; Schiebe, F. The Influence of Suspended Clays on Phytoplankton Reflectance Signatures and the Remote Estimation of Chlorophyll. In Verh. Int. Ver. Theor. Angew. Limnol./Proc. Int. Assoc. Theor. Appl. Limnol./Trav. Assoc. Int. Limnol. Theor. Appl., Dublin, Ireland, 8–14 August 1998; pp. 3619–3625.
- Zhou, W.; Wang, S.; Zhou, Y.; Troy, A. Mapping the concentrations of total suspended matter in Lake Tailm, China, using Landsat-5 TM data. Int. J. Remote Sens. 2006, 27, 1177–1191. [Google Scholar] [CrossRef]
- Kallio, K.; Attila, J.; Harma, P.; Koponen, S.; Pulliainen, J.; Hyytiainen, U.M.; Pyhalahti, T. Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Busteed, P.R.; Storm, D.E.; White, M.J.; Stoodley, S.H. Using SWAT to target critical source sediment and phosphorus areas in the Wister Lake basin, USA. Am. J. Environ. Sci. 2009, 5, 156–163. [Google Scholar] [CrossRef]
- Haggard, B.; Moore, P.; DeLaune, P. Phosphorus flux from bottom sediments in Lake Eucha, Oklahoma. J. Environ. Qual. 2005, 34, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Haggard, B.E.; Soerens, T.S. Sediment phosphorus release at a small impoundment on the Illinois River, Arkansas and Oklahoma, USA. Ecol. Eng. 2006, 28, 280–287. [Google Scholar] [CrossRef]
- Data & Maps: Surface Water. Available online: http://www.owrb.ok.gov/maps/pmg/owrbdata_SW.html (accessed on 12 June 2016).
- USGS. USGS Global Visualization Viewer. Available online: http://glovis.usgs.gov/ (accessed on 12 June 2016).
- USGS. The National Map. Available online: http://nationalmap.gov/ (accessed on 12 June 2016).
- 2012 Oklahoma Lakes Report. Available online: http://www.owrb.ok.gov/quality/monitoring/bump/pdf_bump/archives/2012_LakesBUMPReport.pdf (accessed on 12 June 2016).
- Chen, J.; Quan, W. Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 273–280. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Li, S.; Tedesco, L.; Hall, B.; Li, L. Hyperspectral remote sensing of total phosphorus (TP) in three central Indiana water supply reservoirs. Water Air Soil Pollut. 2012, 223, 1481–1502. [Google Scholar] [CrossRef]
- Python Software Foundation (PSF). Python Language Reference; PSF: Wilmington, DE, USA, 2014. [Google Scholar]
- Environmental Systems Research Institute (ESRI). Arcgis Desktop; Environmental Systems Research Institute: Redlands, CA, USA, 2014. [Google Scholar]
- Barrett, C. Monitoring Eastern Oklahoma Lake Water Quality Using Landsat; Frazier, A.E., Comer, J., Zou, C., Eds.; ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 2015. [Google Scholar]
- Chavez, P.S., Jr. Image-based atmospheric corrections—Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025. [Google Scholar]
- USGS. Landsat 7 Science Data Users Handbook. Available online: http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html (accessed on 12 June 2016).
- Chander, G.; Markham, B. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. Geosci. Remote Sens. 2003, 41, 2674–2677. [Google Scholar] [CrossRef]
- USGS. ACCA Parameters. Available online: http://landsathandbook.gsfc.nasa.gov/cpf/prog_sect9_2.html#section9.2.4 (accessed on 12 June 2016).
- Irish, R.R. Landsat 7 automatic cloud cover assessment. In Proceedings of the AeroSense 2000, Orlando, FL, USA, 24–28 April 2000; pp. 348–355.
- Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- International Business Machines Corporation (IBM). IBM spss Statistics; International Business Machines Corporation: Armonk, NY, USA, 2014. [Google Scholar]
- Gómez-Dans, J. Dn_2_rad.Py. Available online: https://gist.github.com/jgomezdans/5488682 (accessed on 12 June 2016).
- Kochaver, S. Reflectance.Py. Available online: https://github.com/skochaver/reflectance-tools (accessed on 12 June 2016).
Significant Results (n) | Band/Band Combinations | Pearson’s r Values |
---|---|---|
All data (347) | ||
Chlorophyll | SWIR2/NIR | −0.154 |
lnChlorophyll | SWIR2/NIR | −0.155 |
Winter (74) | ||
Chlorophyll | SWIR1/SWIR2 Blue/SWIR2 SWIR2/Green | 0.498 0.273 0.238 |
lnChlorophyll | SWIR1/SWIR2 | 0.379 |
Spring (94) | ||
Chlorophyll | None | N/A |
lnChlorophyll | NIR/SWIR1 Green/SWIR1 Red/SWIR1 Green/SWIR2 NIR/SWIR2 | −0.356 −0.346 −0.319 −0.306 −0.303 |
Summer (99) | ||
Chlorophyll | None | N/A |
lnChlorophyll | None | N/A |
Fall (80) | ||
Chlorophyll | None | N/A |
lnChlorophyll | None | N/A |
Significant Results (n) * | Band/Band Combinations | Pearson’s r Values |
---|---|---|
All data (347) | ||
Turbidity | None | N/A |
lnTurbidity | SWIR1 SWIR2 Red/SWIR1 NIR/SWIR1 Red/SWIR2 | −0.142 −0.145 0.421 0.409 0.431 |
Winter (74) | ||
Turbidity | Green/SWIR1 Green/SWIR2 | 0.455 0.523 |
lnTurbidity | Red/SWIR1 NIR/SWIR1 Red/SWIR2 | 0.510 0.503 0.470 |
Spring (94) | ||
Turbidity | None | N/A |
lnTurbidity | Green/Red Blue/Red SWIR2/NIR SWIR2/Blue | −0.464 -0.422 0.329 0.273 |
Summer (99) | ||
Turbidity * | Red/Green | 0.359 |
Turbidity * | Red/SWIR1 Red/SWIR2 NIR/SWIR1 NIR/SWIR2 | 0.411 0.354 0.43 0.362 |
lnTurbidity* | Red/SWIR1 NIR/SWIR1 NIR/SWIR2 | 0.496 0.494 0.422 |
lnTurbidity* | Red/SWIR2 SWIR2/NIR | 0.427 −0.417 |
Fall (80) | ||
Turbidity | Green/Red | −0.383 |
Turbidity | Red/B5 | 0.281 |
Turbidity | NIR/SWIR1 | 0.335 |
Turbidity | NIR/SWIR2 | 0.303 |
lnTurbidity * lnTurbidity * lnTurbidity * lnTurbidity * lnTurbidity * | Green NIR SWIR1 SWIR2 NIR/SWIR1 | −0.442 −0.443 −0.464 −0.449 0.461 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrett, D.C.; Frazier, A.E. Automated Method for Monitoring Water Quality Using Landsat Imagery. Water 2016, 8, 257. https://doi.org/10.3390/w8060257
Barrett DC, Frazier AE. Automated Method for Monitoring Water Quality Using Landsat Imagery. Water. 2016; 8(6):257. https://doi.org/10.3390/w8060257
Chicago/Turabian StyleBarrett, D. Clay, and Amy E. Frazier. 2016. "Automated Method for Monitoring Water Quality Using Landsat Imagery" Water 8, no. 6: 257. https://doi.org/10.3390/w8060257