A Systematic Literature Review on the Use of Clays for Arsenic Removal
Abstract
:1. Introduction
2. Background
2.1. Clay Classification
2.2. Operational Unit Classification
2.3. Type of Analyses
3. Research Methodology
3.1. Definition of Research Question
- RQ1—What are the main types of clays used for arsenic removal?
- RQ2—What are the primary operational units used for arsenic adsorption by clay?
- RQ3—What are the main types of studies performed and the achievements obtained for arsenic adsorption using clay?
3.2. Search Methodology
- Population: This refers to the specific group of individuals or subjects of interest to the study. In the context of this work, the population is the family and different types of clays that constitute the population of analysis (i.e., Section 2.1), as well as the group of manuscripts from which the research questions are formulated.
- Intervention: The intervention refers to the approach or technique applied in the empirical study. This study involves software methodologies, tools, technologies, and procedures. Different operational units that can be applied to specific procedures in the adsorption of arsenic are considered. These analyses were previously referred to in Section 2.2.
- Comparison: The comparison component involves differentiating methods, processes, or strategies to compare individuals. To do so, we refer to the differentiation of studies performed in different manuscripts (i.e., Section 2.3).
- Outcomes: The outcomes of the adsorption process using different technologies with different clays under different operational conditions should lead to different efficiency and clay uptake conditions.
- Context: The context provides a comprehensive view of whether the study was conducted in academia or industry, the industrial segment, and the subject’s incentives.
3.3. Bibliometric Analysis
3.4. Screening Papers
3.5. Keywording Using Abstracts
4. Results and Discussions
4.1. RQ1—What Are the Main Type of Clays Used for Arsenic Removal?
4.2. RQ2—What Are the Primary Operational Units Used for Arsenic Adsorption by Clay?
4.3. RQ3—What Are the Main Types of Studies Performed and the Achievements Obtained for Arsenic Adsorption Using Clay?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaji, E.; Santosh, M.; Sarath, K.; Prakash, P.; Deepchand, V.; Divya, B. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- van Halem, D.; Bakker, S.A.; Amy, G.L.; van Dijk, J.C. Arsenic in drinking water: A worldwide water quality concern for water supply companies. Drink. Water Eng. Sci. 2009, 2, 29–34. [Google Scholar] [CrossRef]
- WHO. Sanitary Inspection Package: A Supporting Tool for the Guidelines for Drinking-Water Quality: Small Water Supplies; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Palma-Lara, I.; Martínez-Castillo, M.; Quintana-Pérez, J.; Arellano-Mendoza, M.; Tamay-Cach, F.; Valenzuela-Limón, O.; García-Montalvo, E.; Hernández-Zavala, A. Arsenic exposure: A public health problem leading to several cancers. Regul. Toxicol. Pharmacol. 2020, 110, 104539. [Google Scholar] [CrossRef]
- Yadav, M.K.; Saidulu, D.; Gupta, A.K.; Ghosal, P.S.; Mukherjee, A. Status and management of arsenic pollution in groundwater: A comprehensive appraisal of recent global scenario, human health impacts, sustainable field-scale treatment technologies. J. Environ. Chem. Eng. 2021, 9, 105203. [Google Scholar] [CrossRef]
- Fauser, P.; Czub, M.J.; Bełdowski, J.; Niemikoski, H.; Vanninen, P.; Popiel, S.; Nawała, J.; Dziedzic, D.; Sanderson, H. Chemical warfare agents and their risk assessment in Daphnia magna and fish in the Baltic Sea—15 years of measurements. J. Hazard. Mater. Adv. 2023, 12, 100386. [Google Scholar] [CrossRef]
- Hasan, N.T.; Han, D.; Xu, X.; Sansom, G.; Roh, T. Relationship between low-level arsenic exposure in drinking water and kidney cancer risk in Texas. Environ. Pollut. 2024, 363, 125097. [Google Scholar] [CrossRef]
- Smith, A.H.; Marshall, G.; Yuan, Y.; Ferreccio, C.; Liaw, J.; von Ehrenstein, O.; Steinmaus, C.; Bates, M.N.; Selvin, S. Increased mortality from lung cancer and bronchiectasis in young adultsafter exposure to arsenic in utero and in early childhood. Environ. Health Perspect. 2006, 114, 1293–1296. [Google Scholar] [CrossRef]
- Maity, J.P.; Chen, C.-Y.; Bhattacharya, P.; Sharma, R.K.; Ahmad, A.; Patnaik, S.; Bundschuh, J. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. J. Hazard. Mater. 2021, 405, 123885. [Google Scholar] [CrossRef]
- Sorlini, S.; Miino, M.C.; Lazarova, Z.; Collivignarelli, M.C. Electrochemical Treatment of Arsenic in Drinking Water: Effect of Initial As3+ Concentration, pH, and Conductivity on the Kinetics of Oxidation. Clean Technol. 2023, 5, 203–214. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Tzollas, N.M.; Tolkou, A.K.; Mitrakas, M.; Ernst, M.; Zouboulis, A.I. Use of novel composite coagulants for arsenic removal from waters—Experimental insight for the application of polyferric sulfate (PFS). Sustainability 2017, 9, 590. [Google Scholar] [CrossRef]
- Meez, E.; Tolkou, A.K.; Giannakoudakis, D.A.; Katsoyiannis, I.A.; Kyzas, G.Z. Activated carbons for arsenic removal from natural waters and wastewaters: A review. Water 2021, 13, 2982. [Google Scholar] [CrossRef]
- Usman, M.; Katsoyiannis, I.; Rodrigues, J.H.; Ernst, M. Arsenate removal from drinking water using by-products from conventional iron oxyhydroxides production as adsorbents coupled with submerged microfiltration unit. Environ. Sci. Pollut. Res. 2021, 28, 59063–59075. [Google Scholar] [CrossRef] [PubMed]
- Otunola, B.O.; Ololade, O.O. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ. Technol. Innov. 2020, 18, 100692. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Inf. Softw. Technol. 2015, 64, 1–18. [Google Scholar] [CrossRef]
- Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences: A Practical Guide; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kitchenham, B. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report, Version 2.3, EBSE Technical Report; Keele University: Keele, UK; University of Durham: Durham, UK, 2007. [Google Scholar]
- Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic mapping studies in software engineering. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering (EASE 2008), Bari, Italy, 26–27 June 2008. [Google Scholar]
- Acharya, A.; Jeppu, G.; Girish, C.R.; Prabhu, B.; Murty, V.R.; Martis, A.S.; Ramesh, S. Adsorption of arsenic and fluoride: Modeling of single and competitive adsorption systems. Heliyon 2024, 10, e31967. [Google Scholar] [CrossRef]
- Marco-Brown, J.L.; Melotta, M.; Fernández, M.; Iriel, A. Arsenic and fluoride adsorption from multielement solutions onto aluminium modified montmorillonite. Groundw. Sustain. Dev. 2024, 26, 101205. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Yan, J.; Wang, Y.; Yu, B.; Zhang, X.; Ye, S. TiO2 pillared montmorillonite in-situ growth of CeOx/MnOy nanoparticles for effective arsenic (III) adsorption in wastewater. Environ. Sci. Pollut. Res. 2020, 27, 17986–17996. [Google Scholar] [CrossRef]
- Bandpei, A.M.; Mohseni, S.M.; Sheikhmohammadi, A.; Sardar, M.; Sarkhosh, M.; Almasian, M.; Avazpour, M.; Mosallanejad, Z.; Atafar, Z.; Nazari, S.; et al. Optimization of arsenite removal by adsorption onto organically modified montmorillonite clay: Experimental & theoretical approaches. Korean J. Chem. Eng. 2016, 34, 376–383. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Z.; Luo, H.; Hu, B.; Dang, Z.; Yang, C.; Li, L. Adsorption of arsenic on modified montmorillonite. Appl. Clay Sci. 2014, 97–98, 17–23. [Google Scholar] [CrossRef]
- Shokri, E.; Yegani, R.; Pourabbas, B.; Kazemian, N. Preparation and characterization of polysulfone/organoclay adsorptive nanocomposite membrane for arsenic removal from contaminated water. Appl. Clay Sci. 2016, 132–133, 611–620. [Google Scholar] [CrossRef]
- Iriel, A.; Marco-Brown, J.L.; Diljkan, M.; Trinelli, M.A.; Afonso, M.d.S.; Cirelli, A.F. Arsenic Adsorption on Iron-Modified Montmorillonite: Kinetic Equilibrium and Surface Complexes. Environ. Eng. Sci. 2020, 37, 22–32. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y.; Wang, J.; Du, Y.; Wang, Z.; Guo, Q.; Pan, Z.; Ma, X.; Planer-Friedrich, B.; Luo, Y.; et al. Mobilization of Colloid- and Nanoparticle-Bound Arsenic in Contaminated Paddy Soils during Reduction and Reoxidation. Environ. Sci. Technol. 2023, 57, 9843–9853. [Google Scholar] [CrossRef] [PubMed]
- Almasri, D.A.; Rhadfi, T.; Atieh, M.A.; McKay, G.; Ahzi, S. High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem. Eng. J. 2018, 335, 1–12. [Google Scholar] [CrossRef]
- Ozola, R.; Krauklis, A.; Leitietis, M.; Burlakovs, J.; Vircava, I.; Ansone-Bertina, L.; Bhatnagar, A.; Klavins, M. FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environ. Technol. Innov. 2019, 13, 364–372. [Google Scholar] [CrossRef]
- Bentahar, Y.; Hurel, C.; Draoui, K.; Khairoun, S.; Marmier, N. Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Appl. Clay Sci. 2016, 119, 385–392. [Google Scholar] [CrossRef]
- Ghorbanzadeh, N.; Jung, W.; Halajnia, A.; Lakzian, A.; Kabra, A.N.; Jeon, B.-H. Removal of arsenate and arsenite from aqueous solution by adsorption on clay minerals. Geosystem Eng. 2015, 18, 302–311. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Barman, A.; Datta, S.C.; Manjaiah, K.M. Arsenic Adsorption on Modified Clay Minerals in Contaminated Soil and Water: Impact of pH and Competitive Anions. CLEAN—Soil Air Water 2021, 49, 2000259. [Google Scholar] [CrossRef]
- Franco, F.; Benítez-Guerrero, M.; Gonzalez-Triviño, I.; Pérez-Recuerda, R.; Assiego, C.; Cifuentes-Melchor, J.; Pascual-Cosp, J. Low-cost aluminum and iron oxides supported on dioctahedral and trioctahedral smectites: A comparative study of the effectiveness on the heavy metal adsorption from water. Appl. Clay Sci. 2016, 119, 321–332. [Google Scholar] [CrossRef]
- Wang, M.; Bera, G.; Mitra, K.; Wade, T.L.; Knap, A.H.; Phillips, T.D. Tight sorption of arsenic, cadmium, mercury, and lead by edible activated carbon and acid-processed montmorillonite clay. Environ. Sci. Pollut. Res. 2021, 28, 6758–6770. [Google Scholar] [CrossRef]
- Foroutan, R.; Mohammadi, R.; Adeleye, A.S.; Farjadfard, S.; Esvandi, Z.; Arfaeinia, H.; Sorial, G.A.; Ramavandi, B.; Sahebi, S. Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents. Environ. Sci. Pollut. Res. 2019, 26, 29748–29762. [Google Scholar] [CrossRef] [PubMed]
- Kanel, S.R.; Das, T.K.; Varma, R.S.; Kurwadkar, S.; Chakraborty, S.; Joshi, T.P.; Bezbaruah, A.N.; Nadagouda, M.N. Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS Environ. Au 2023, 3, 135–152. [Google Scholar] [CrossRef]
- Ilgen, A.G.; Kruichak, J.N.; Artyushkova, K.; Newville, M.G.; Sun, C. Redox Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites: Role of Structural and Adsorbed Fe(II). Environ. Sci. Technol. 2017, 51, 11105–11114. [Google Scholar] [CrossRef]
- Mutar, R.F.; Saleh, M.A. Optimization of arsenic ions adsorption and removal from hospitals wastewater by nano-bentonite using central composite design. Mater. Today Proc. 2022, 60, 1248–1256. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Zarei, A.; Mesdaghinia, A.; Nabizadeh, R.; Alimohammadi, M.; Afsharnia, M. Response surface modeling, isotherm, thermodynamic and optimization study of arsenic (V) removal from aqueous solutions using modified bentonite-chitosan (MBC). Korean J. Chem. Eng. 2017, 34, 757–767. [Google Scholar] [CrossRef]
- Dousova, B.; Lhotka, M.; Filip, J.; Kolousek, D. Removal of arsenate and antimonate by acid-treated Fe-rich clays. J. Hazard. Mater. 2018, 357, 440–448. [Google Scholar] [CrossRef]
- Masindi, V.; Gitari, M.W.; Tutu, H.; De Beer, M. Application of magnesite–bentonite clay composite as an alternative technology for removal of arsenic from industrial effluents. Toxicol. Environ. Chem. 2014, 96, 1435–1451. [Google Scholar] [CrossRef]
- Saleh, S.; Mohammadnejad, S.; Khorgooei, H.; Otadi, M. Photooxidation/adsorption of arsenic (III) in aqueous solution over bentonite/ chitosan/TiO2 heterostructured catalyst. Chemosphere 2021, 280, 130583. [Google Scholar] [CrossRef]
- Hokkanen, S.; Doshi, B.; Srivastava, V.; Puro, L.; Koivula, R. Arsenic (III) removal from water by hydroxyapatite-bentonite clay-nanocrystalline cellulose. Environ. Prog. Sustain. Energy 2019, 38, 13147. [Google Scholar] [CrossRef]
- Baigorria, E.; Cano, L.A.; Sanchez, L.M.; Alvarez, V.A.; Ollier, R.P. Bentonite-composite polyvinyl alcohol/alginate hydrogel beads: Preparation, characterization and their use as arsenic removal devices. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100364. [Google Scholar] [CrossRef]
- Fazlali, F.; Mahjoub, A.R.; Aghayan, H. Adsorption of toxic heavy metals on organofunctionalized acid activated exfoliated bentonite clay for achieving wastewater treatment goals. Desalin. Water Treat 2019, 152, 338–350. [Google Scholar] [CrossRef]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total. Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K. Chemical Science Review and Letters Adsorption of Cr(VI) and Arsenic onto Bentonite. Chem. Sci. Rev. Lett. 2014, 12, 3. [Google Scholar]
- Mukhopadhyay, R.; Manjaiah, K.; Datta, S.; Sarkar, B. Comparison of properties and aquatic arsenic removal potentials of organically modified smectite adsorbents. J. Hazard. Mater. 2019, 377, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Hua, J. Synthesis and characterization of bentonite based inorgano–organo-composites and their performances for removing arsenic from water. Appl. Clay Sci. 2015, 114, 239–246. [Google Scholar] [CrossRef]
- Pawar, R.R.; Lalhmunsiama; Kim, M.; Kim, J.-G.; Hong, S.-M.; Sawant, S.Y.; Lee, S.M. Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads. Appl. Clay Sci. 2018, 162, 339–350. [Google Scholar] [CrossRef]
- Khoddam, M.A.; Norouzbeigi, R.; Velayi, E.; Cavallaro, G. Statistical-based optimization and mechanism assessments of Arsenic (III) adsorption by ZnO-Halloysite nanocomposite. Sci. Rep. 2024, 14, 21629. [Google Scholar] [CrossRef] [PubMed]
- Deb, A.K.; Biswas, B.; Rahman, M.M.; Xi, Y.; Paul, S.K.; Naidu, R. Magnetite Nanoparticles Loaded into Halloysite Nanotubes for Arsenic(V) Removal from Water. ACS Appl. Nano Mater. 2022, 5, 12063–12076. [Google Scholar] [CrossRef]
- Mudzielwana, R.; Gitari, M.W.; Ndungu, P. Enhanced As(III) and As(V) Adsorption from Aqueous Solution by a Clay Based Hybrid Sorbent. Front. Chem. 2020, 7, 913. [Google Scholar] [CrossRef]
- Botto, I.L.; Tuti, S.; Gonzalez, M.J.; Gazzoli, D. Correlation between Iron Reducibility in Natural and Iron-Modified Clays and Its Adsorptive Capability for Arsenic Removal. Adv. Mater. Phys. Chem. 2016, 6, 129–139. [Google Scholar] [CrossRef]
- Chammui, Y.; Sooksamiti, P.; Naksata, W.; Thiansem, S.; Arqueropanyo, O.-A. Removal of arsenic from aqueous solution by adsorption on Leonardite. Chem. Eng. J. 2014, 240, 202–210. [Google Scholar] [CrossRef]
- Duan, X.-L.; Yuan, C.-G.; He, K.-Q.; Yu, J.-X.; Jiang, Y.-H.; Guo, Q.; Li, Y.; Yu, S.-J.; Liu, J.-F. Gaseous Arsenic Capture in Flue Gas by CuCl2-Modified Halloysite Nanotube Composites with High-Temperature NOx and SOx Resistance. Environ. Sci. Technol. 2022, 56, 4507–4517. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Liu, H.; Zhang, X.; Huang, Y.; Li, H.; Huang, B.; Hu, H.; Yao, H. In-Furnace Control of Arsenic Vapor Emissions Using Kaolinite during Low-Rank Coal Combustion: Influence of Gaseous Sodium Compounds. Environ. Sci. Technol. 2019, 53, 12113–12120. [Google Scholar] [CrossRef]
- Rehman, A.; Rukh, S.; Al Ayoubi, S.; Khattak, S.A.; Mehmood, A.; Ali, L.; Khan, A.; Malik, K.M.; Qayyum, A.; Salam, H. Natural Clay Minerals as Potential Arsenic Sorbents from Contaminated Groundwater: Equilibrium and Kinetic Studies. Int. J. Environ. Res. Public Health 2022, 19, 16292. [Google Scholar] [CrossRef]
- Ihekweme, G.O.; Obianyo, I.I.; Anosike-Francis, E.N.; Anyakora, V.N.; Odusanya, O.S.; Onwualu, A.P. Expanded clay aggregates multi-functionality for water purification: Disinfection and adsorption studies. Cogent Eng. 2021, 8, 1883232. [Google Scholar] [CrossRef]
- Chi, Z.; Xie, X.; Pi, K.; Wu, Y.; Wang, Y. Spectroscopic and modeling approaches of arsenic (III/V) adsorption onto Illite. J. Hazard. Mater. 2024, 477, 135284. [Google Scholar] [CrossRef]
- Qi, C.; Xu, X.; Chen, Q.; Liu, H.; Min, X.; Fourie, A.; Chai, L. Ab initio calculation of the adsorption of As, Cd, Cr, and Hg heavy metal atoms onto the illite(001) surface: Implications for soil pollution and reclamation. Environ. Pollut. 2022, 312, 120072. [Google Scholar] [CrossRef]
- Lefticariu, L.; Sutton, S.R.; Lanzirotti, A.; Flynn, T.M. Enhanced Immobilization of Arsenic from Acid Mine Drainage by Detrital Clay Minerals. ACS Earth Space Chem. 2019, 3, 2525–2538. [Google Scholar] [CrossRef]
- Schaefer, M.V.; Abernathy, M.J.; Nguyen, D.; Cornell, T.; Ying, S.C. Firing Increases Arsenic Leaching from Ceramic Water Filters via Arsenic and Iron Phase Transformations. Environ. Sci. Technol. 2021, 55, 9826–9835. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, L.-M.; Gao, W.; Dong, Y.-X.; Zhao, Y.-J.; He, M.-C. Adsorption mechanisms of heavy metal atoms As, Pb, and Zn on thermally activated palygorskite Si–O/Mg–O (200) surfaces: A first-principles calculations. Micro Nanostruct. 2024, 193, 207917. [Google Scholar] [CrossRef]
- Liñán-González, A.E.; Aguilar-Aguilar, A.; Robledo-Cabrera, A.; Collins-Martínez, V.H.; Flores-Cano, J.V.; Ocampo-Perez, R.; Padilla-Ortega, E. Synthesis of bifunctional nanostructured adsorbents based on anionic/cationic clays: Effect of arrangement on simultaneous adsorption of cadmium and arsenate. Environ. Sci. Pollut. Res. 2024, 31, 40100–40116. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Kong, M.; Gu, X.; Chen, H. Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes. J. Clean. Prod. 2017, 166, 88–97. [Google Scholar] [CrossRef]
- Doshi, R.K.; Mukherjee, R.; Diwekar, U.M. Application of Adsorbate Solid Solution Theory To Design Novel Adsorbents for Arsenic Removal Using CAMD. ACS Sustain. Chem. Eng. 2018, 6, 2603–2611. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Y.; Tan, X.; Liu, Y.; Zhou, Y.; Hu, X.; Cai, X.; Xu, W.; Zhang, C.; Liu, S. Functionalized Biochar/Clay Composites for Reducing the Bioavailable Fraction of Arsenic and Cadmium in River Sediment. Environ. Toxicol. Chem. 2019, 38, 2337–2347. [Google Scholar] [CrossRef]
- Fakhreddine, S.; Dittmar, J.; Phipps, D.; Dadakis, J.; Fendorf, S. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge. Environ. Sci. Technol. 2015, 49, 7802–7809. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, W. Evaluating the adsorption of Shanghai silty clay to Cd(II), Pb(II), As(V), and Cr(VI): Kinetic, equilibrium, and thermodynamic studies. Environ. Monit. Assess. 2021, 193, 1–23. [Google Scholar] [CrossRef]
- Jain, N.; Maiti, A. Arsenite Oxidation and Arsenic Adsorption Strategy Using Developed Material from Laterite and Ferromanganese Slag: Electron Paramagnetic Resonance Spectroscopy Analysis. Ind. Eng. Chem. Res. 2023, 62, 15600–15612. [Google Scholar] [CrossRef]
- Rathore, V.K.; Mondal, P. Stabilization of arsenic and fluoride bearing spent adsorbent in clay bricks: Preparation, characterization and leaching studies. J. Environ. Manag. 2017, 200, 160–169. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S. Current trends of arsenic adsorption in continuous mode: Literature review and future perspectives. Sustainability 2021, 13, 1186. [Google Scholar] [CrossRef]
- He, G.; Zhang, Z.; Wu, X.; Cui, M.; Zhang, J.; Huang, X. Adsorption of heavy metals on soil collected from lixisol of typical karst areas in the presence of CaCO3 and soil clay and their competition behavior. Sustainability 2020, 12, 7315. [Google Scholar] [CrossRef]
- Rosa, M.; Egido, J.; Márquez, M. Empirical kinetic models for the electrochemical extraction of arsenic and heavy metals from clay containing tailings. Appl. Clay Sci. 2019, 182, 105254. [Google Scholar] [CrossRef]
- Saeed, R.; Qureshi, K.; Shaikh, M.S.; Bhatti, Z.A. Removal of Arsenic from synthetic-water using Iron Coated Sand Adsorbent and Modified Ceramic Clay House Hold Pitcher. In Proceedings of the 2021 4th International Conference on Energy Conservation and Efficiency, ICECE 2021, Lahore, Pakistan, 16–17 March 2021. [Google Scholar] [CrossRef]
- Yang, H.; Min, X.; Xu, S.; Wang, Y. Lanthanum(III)-Coated Ceramics as a Promising Material in Point-of-Use Water Treatment for Arsenite and Arsenate Removal. ACS Sustain. Chem. Eng. 2019, 7, 9220–9227. [Google Scholar] [CrossRef]
- Zehhaf, A.; Benyoucef, A.; Quijada, C.; Taleb, S.; Morallón, E. Algerian natural montmorillonites for arsenic(III) removal in aqueous solution. Int. J. Environ. Sci. Technol. 2015, 12, 595–602. [Google Scholar] [CrossRef]
- Aljohani, N.S.; Kavil, Y.N.; Al-Farawati, R.K.; Alelyani, S.S.; Orif, M.I.; Shaban, Y.A.; Al-Mhyawi, S.R.; Aljuhani, E.H.; Salam, M.A. The effective adsorption of arsenic from polluted water using modified Halloysite nanoclay. Arab. J. Chem. 2023, 16, 104652. [Google Scholar] [CrossRef]
- Mishra, T.; Mahato, D.K. A comparative study on enhanced arsenic(V) and arsenic(III) removal by iron oxide and manganese oxide pillared clays from ground water. J. Environ. Chem. Eng. 2016, 4, 1224–1230. [Google Scholar] [CrossRef]
- Mudzielwana, R.; Gitari, M.W.; Ndungu, P. Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: Adsorption kinetics, isotherms and thermodynamics. Heliyon 2019, 5, e02756. [Google Scholar] [CrossRef]
Clay Type | Structure | Properties | Applications |
---|---|---|---|
Smectites | 2:1-layer silicates with two silica tetrahedral sheets sandwiching one octahedral sheet of aluminum or magnesium; layers can expand with water or molecules in between. | High swelling capacity due to water absorption between layers; high cation exchange capacity (CEC); large chemically active surface area; interlamellar surfaces with unusual hy7dration characteristics; can be modified to improve adsorption of organic compounds. Examples: montmorillonite, bentonite, beidellite. | Effective for adsorbing heavy metals such as Pb, Cd, Cu, Zn, and Cr due to high surface area and CEC. |
Kaolinite group | 1:1-layer silicate with one silica tetrahedral sheet and one alumina octahedral sheet; lacks interlayer space for expansion. | Non-expanding and non-swelling, providing stability; low plasticity; low shrink–swell behavior; ease of dispersion in water; lower surface area and CEC than smectites; often requires modification to enhance adsorption. | Used in adsorption of metals like Cr, Zn, and Cu; modification often necessary for effective performance. |
Illite group | 2:1-layer silicate, similar to smectites but stabilized by potassium ions in the interlayer, making it non-expandable. | Non-swelling due to potassium bonds; smaller CEC than that of smectite but higher than kaolinite; good thermal stability. | Effective for adsorbing metals like Pb, Zn, and Cr; suitable for environments where swelling clays are undesirable. |
Fibrous clays | Unique chain-like structure with silica tetrahedra chains linked by aluminum or magnesium octahedral sheets. | High surface area and porous structure; non-swelling but effective at adsorbing heavy metals due to high surface area; strongly hydrophilic; intermediate CEC. Examples: palygorskite (attapulgite), sepiolite. | Applied in adsorption of metals like Cr, Ni, Pb, and Cu; also used in environmental remediation as an absorbent. |
Operational Unit | Description | Process |
---|---|---|
Batch reactor | For lab-scale studies, allowing controlled testing of adsorption kinetics and efficiency. | Adsorbent and contaminated water are mixed in a closed system for a set time—ideal for optimizing conditions. |
Fixed bed | Used in large-scale setups, where water flows through a packed adsorbent column. | Water flows through adsorbent material in a column, allowing continuous adsorption. The adsorbent is replaceable once saturated. |
Ion exchange | Removes specific ions by exchanging them with benign ions on an ion-exchange resin. | A reversible chemical reaction exchanges ions in water with those on the resin, removing heavy metals like Na+ or K+. |
Chemical precipitation | Converts dissolved metals to solids for easy removal by adding chemicals. | The added chemicals react with metal ions to form insoluble precipitates that are removable by sedimentation or filtration. |
Membrane filtration | Separates contaminants using a membrane that retains larger particles. | Water passes through a semi-permeable membrane, blocking larger ions and particles while allowing smaller ones through. |
Electrochemical treatment | Uses electric current to induce reactions that precipitate or reduce metal ions. | Electric current either reduces metal ions to solids (electrodeposition) or forms compounds that precipitate metals (electrocoagulation). |
Coagulation and flocculation | Aggregates fine particles into larger clusters for easier removal. | Coagulation destabilizes particles, while flocculation encourages clustering into flocs, which are then removed by sedimentation or filtration. |
Database | Search |
---|---|
Scopus and IEEE | (“clay” OR “smectites” OR “montmorillonite” OR “bentonite” OR “nontronite” OR “saponite” OR “beidellite” OR “kaolinite” OR “halloysite” OR “illite” OR “glauconite” OR “fibrous clays” OR “sepiolite” OR “palygorskite” OR “vermiculite” OR “chlorite” OR “pyrophyllite”) AND (“heavy metal” OR “arsenic”) AND (“adsorption” OR “ion exchange” OR “chemical precipitation” OR “membrane filtration” OR “electrochemical” OR “coagulation” OR “flocculation”) |
GS and ACS | (“clay” OR “smectites” OR “montmorillonite” OR “bentonite” OR “nontronite” OR “saponite” OR “beidellite” OR “kaolinite” OR “halloysite” OR “illite” OR “glauconite” OR “fibrous clays” OR “sepiolite” OR “palygorskite” OR “vermiculite” OR “chlorite” OR “pyrophyllite”) AND (“arsenic”) AND (“adsorption” OR “ion exchange” OR “chemical precipitation” OR “membrane filtration” OR “electrochemical” OR “coagulation” OR “flocculation”) |
Engine | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total | Perc. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IEEE | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 4 | 3 | 2 | 1 | 14 | 5.30% |
ACS | 93 | 108 | 109 | 173 | 184 | 193 | 214 | 233 | 239 | 314 | 295 | 1884 | 7.57% |
Scopus | 7 | 5 | 6 | 6 | 6 | 17 | 13 | 12 | 12 | 27 | 22 | 133 | 3.21% |
GS | 140 | 142 | 173 | 139 | 141 | 188 | 148 | 128 | 180 | 169 | 134 | 1690 | 0.86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Bozo, L.; Vyhmeister, E.; Castane, G.G.; Chirinos, J.; Zárraga, J.; Sandoval-Yáñez, C.; Valdés-González, H. A Systematic Literature Review on the Use of Clays for Arsenic Removal. Water 2025, 17, 1402. https://doi.org/10.3390/w17091402
Reyes-Bozo L, Vyhmeister E, Castane GG, Chirinos J, Zárraga J, Sandoval-Yáñez C, Valdés-González H. A Systematic Literature Review on the Use of Clays for Arsenic Removal. Water. 2025; 17(9):1402. https://doi.org/10.3390/w17091402
Chicago/Turabian StyleReyes-Bozo, Lorenzo, Eduardo Vyhmeister, Gabriel G. Castane, Juan Chirinos, Jeannette Zárraga, Claudia Sandoval-Yáñez, and Héctor Valdés-González. 2025. "A Systematic Literature Review on the Use of Clays for Arsenic Removal" Water 17, no. 9: 1402. https://doi.org/10.3390/w17091402
APA StyleReyes-Bozo, L., Vyhmeister, E., Castane, G. G., Chirinos, J., Zárraga, J., Sandoval-Yáñez, C., & Valdés-González, H. (2025). A Systematic Literature Review on the Use of Clays for Arsenic Removal. Water, 17(9), 1402. https://doi.org/10.3390/w17091402