A Case Study on Factors Influencing Escherichia coli Concentrations in an Urban River Draining a Fully Sewered Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Origin
2.2. Decay Rate of Native E. coli Contained in the Sample
2.3. Decay Rate of E. coli Strains Under Competitive and Non-Competitive Conditions
2.4. Enumeration of E. coli Numbers
2.5. Disk-Diffusion Test for Antibiotic Susceptibility
3. Results
3.1. Numbers of E. coli at the Sampling Point
3.2. Susceptibility of the Isolates to Antimicrobials
3.3. Decay Rate of Native E. coli in Overlying Water and Sediment-Containing Water
3.4. Decay Rate of E. coli Strains Under Competitive and Non-Competitive Conditions
4. Discussion
4.1. Monitoring During Wet-Weather Conditions
4.2. Effect of Temperature on Survival of Pathogens
4.3. Importance of Biological Factors in the Decay Rate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semenza, J.C.; Rocklöv, J.; Ebi, K.L. Climate change and cascading risks from infectious disease. Infect. Dis. Ther. 2022, 11, 1371–1390. [Google Scholar] [CrossRef]
- Chua, P.L.C.; Huber, V.; Ng, C.F.S.; Seposo, X.T.; Madaniyazi, L.; Hales, S.; Woodward, A.; Hashizume, M. Global projections of temperature-attributable mortality due to enteric infections: A modelling study. Lancet Planet. Health 2021, 5, e436–e445. [Google Scholar] [CrossRef]
- Korajkic, A.; Wanjugi, P.; Brooks, L.; Cao, Y.; Harwood, V.J. Persistence and decay of fecal microbiota in aquatic habitats. Microbiol. Mol. Biol. Rev. 2019, 83, e00005-19. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liang, J.; Wang, Y.; Tao, Y.; Lu, Y.; Wang, A. A global perspective on microbial risk factors in effluents of wastewater treatment plants. J. Environ. Sci. 2024, 138, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Poopipattana, C.; Suzuki, M.; Furumai, H. Impact of long-duration CSO events under different tidal change conditions on distribution of microbial indicators and PPCPs in Sumida river estuary of Tokyo Bay, Japan. Environ. Sci. Pollut. Res. 2021, 28, 7212–7225. [Google Scholar] [CrossRef] [PubMed]
- Ekhlas, D.; Kurisu, F.; Kasuga, I.; Cernava, T.; Berg, G.; Liu, M.; Furumai, H. Identification of new eligible indicator organisms for combined sewer overflow via 16S rRNA gene amplicon sequencing in Kanda River, Tokyo. J. Environ. Manag. 2021, 284, 112059. [Google Scholar] [CrossRef]
- García-Aljaro, C.; Martín-Díaz, J.; Vinas-Balada, E.; Calero-Caceres, W.; Lucena, F.; Blanch, A.R. Mobilisation of microbial indicators, microbial source tracking markers and pathogens after rainfall events. Water Res. 2017, 112, 248–253. [Google Scholar] [CrossRef]
- Zan, R.; Blackburn, A.; Plaimart, J.; Acharya, K.; Walsh, C.; Stirling, R.; Kilsby, C.G.; Werner, D. Environmental DNA clarifies impacts of combined sewer overflows on the bacteriology of an urban river and resulting risks to public health. Sci. Total Environ. 2023, 889, 164282. [Google Scholar] [CrossRef]
- Ishii, Y.; Kurisu, F.; Kasuga, I.; Furumai, H. Competition for growth substrates in river water between Escherichia coli and indigenous bacteria illustrated by high-resolution mass spectrometry. Lett. Appl. Microbiol. 2021, 72, 133–140. [Google Scholar] [CrossRef]
- Abberton, C.L.; Bereschenko, L.; van der Wielen, P.W.; Smith, C.J. Survival, biofilm formation, and growth potential of environmental and enteric Escherichia coli strains in drinking water microcosms. Appl. Environ. Microbiol. 2016, 82, 5320–5331. [Google Scholar] [CrossRef]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef]
- Rumball, N.A.; Alm, E.W.; McLellan, S.L. Genetic Determinants of Escherichia coli survival in beach sand. Appl. Environ. Microbiol. 2023, 89, e0142322. [Google Scholar] [CrossRef] [PubMed]
- van Elsas, J.D.; Semenov, A.V.; Costa, R.; Trevors, J.T. Survival of Escherichia coli in the environment: Fundamental and public health aspects. ISME J. 2011, 5, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.M.E.; El-Liethy, M.A.; Abia, A.L.K.; Hemdan, B.A.; Shaheen, M.N. Survival of E. coli O157:H7, Salmonella typhimurium, HAdV2 and MNV-1 in river water under dark conditions and varying storage temperatures. Sci. Total Environ. 2019, 648, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Sutton, N.B.; Wagner, T.V.; Rijnaarts, H.H.M.; van der Wielen, P.W.J.J. Influence of combined abiotic/biotic factors on decay of P. aeruginosa and E. coli in Rhine River water. Appl. Microbiol. Biotechnol. 2024, 108, 294. [Google Scholar] [CrossRef]
- Liang, L.; Goh, S.G.; Gin, K.Y.H. Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity. Sci. Total Environ. 2017, 574, 165–175. [Google Scholar] [CrossRef]
- Flint, K.P. The long-term survival of Escherichia coli in river water. J. Appl. Bacteriol. 1987, 63, 261–270. [Google Scholar] [CrossRef]
- Wang, G.; Doyle, M.P. Survival of enterohemorrhagic Escherichia coli 0157:H7 in water. J. Food Prot. 1998, 61, 662–667. [Google Scholar] [CrossRef]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Competitive Survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in Riverbed Sediments. Microb. Ecol. 2016, 72, 881–889. [Google Scholar] [CrossRef]
- Lim, C.H.; Flint, K.P. The effects of nutrients on the survival of Escherichia coli in lake water. J. Appl. Bacteriol. 1989, 66, 559–569. [Google Scholar] [CrossRef]
- Alvarez, B.; López, M.M.; Biosca, E.G. Influence of native microbiota on survival of Ralstonia solanacearum phylotype II in river water microcosms. Appl Environ Microbiol. 2007, 73, 7210–7217. [Google Scholar] [CrossRef]
- Liu, B.; Lee, C.W.; Bong, C.W.; Wang, A.J. Investigating Escherichia coli habitat transition from sediments to water in tropical urban lakes. PeerJ 2024, 12, e16556. [Google Scholar] [CrossRef]
- Kim, M.; Wuertz, S. Survival and persistence of host-associated Bacteroidales cells and DNA in comparison with Escherichia coli and Enterococcus in freshwater sediments as quantified by PMA-qPCR and qPCR. Water Res. 2015, 87, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Schang, C.; Lintern, A.; Cook, P.L.M.; Osborne, C.; McKinley, A.; Schmidt, J.; Coleman, R.; Rooney, G.; Henry, R.; Deletic, A.; et al. Presence and survival of culturable Campylobacter spp. and Escherichia coli in a temperate urban estuary. Sci. Total Environ. 2016, 569–570, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Land, Infrastructure, Transport and Tourism, Japan, Water Information System. Available online: http://www1.river.go.jp/ (accessed on 1 April 2025).
- Urase, T.; Sato, T. Quantitative Monitoring of Resistance in Escherichia coli to Clinically Important Antimicrobials in an Urban Watershed. J. Water Environ. Technol. 2016, 14, 341–349. [Google Scholar] [CrossRef]
- CLSI (Clinical and Laboratory Standards Institute). M100 Performance Standard for Antimicrobial Susceptibility Testing, 28th ed.; CLSI: Malvern, PA, USA, 2018. [Google Scholar]
- Tsutsui, H.; Urase, T. Characterization of extended spectrum β-lactamase-producing Escherichia coli in the environment isolated with different concentrations of cefotaxime. J. Water Environ. Technol. 2019, 17, 262–272. [Google Scholar] [CrossRef]
- Antimicrobial Resistance (AMR) One Health Platform System. Available online: https://amr-onehealth-platform.ncgm.go.jp/ (accessed on 1 April 2025).
- National Veterinary Assay Laboratory; Ministry of Agriculture, Forestry and Fisheries. Countermeasures of Antimicrobial resistance (AMR). Available online: https://www.maff.go.jp/nval/yakuzai/yakuzai_AMR_2.html (accessed on 1 April 2025).
- Hiki, M.; Kawanishi, M.; Abo, H.; Kojima, A.; Koike, R.; Hamamoto, S.; Asai, T. Decreased resistance to broad-spectrum cephalosporin in Escherichia coli from healthy broilers at farms in Japan after voluntary withdrawal of ceftiofur. Foodborne Pathog. Dis. 2015, 12, 639–643. [Google Scholar] [CrossRef]
- Urase, T.; Okazaki, M.; Tsutsui, H. Prevalence of ESBL-producing Escherichia coli and carbapenem-resistant Enterobacteriaceae in treated wastewater: A comparison with nosocomial infection surveillance. J. Water Health 2020, 18, 899–910. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, L.; Gong, D.; Lu, J. Effects of sterilization treatments on the analysis of TOC in water samples. J. Environ. Sci. 2010, 22, 789–795. [Google Scholar] [CrossRef]
- Sylvestre, É.; Burnet, J.B.; Smeets, P.; Medema, G.; Prévost, M.; Dorner, S. Can routine monitoring of E. coli fully account for peak event concentrations at drinking water intakes in agricultural and urban rivers? Water Res. 2020, 170, 115369. [Google Scholar] [CrossRef]
- Satoh, H.; Katayose, Y.; Hirano, R. Simple enumeration of Escherichia coli concentrations in river water samples by measuring β-d-glucuronidase activities in a microplate reader. Water Sci. Technol. 2021, 83, 1399–1406. [Google Scholar] [CrossRef]
- Jeong, J.; Wagner, K.; Flores, J.; Cawthon, T.; Her, Y.; Osorio, J.; Yen, H. Linking watershed modeling and bacterial source tracking to better assess E. coli sources. Sci. Total Environ. 2019, 648, 164–175. [Google Scholar] [CrossRef]
- Kelmer, G.A.R.; Ramos, E.R.; Dias, E.H.O. Coliphages as viral indicators in municipal wastewater: A comparison between the ISO and the USEPA methods based on a systematic literature review. Water Res. 2023, 230, 119579. [Google Scholar] [CrossRef]
Resistant Ratio to Antimicrobials (-) | ||||||||
---|---|---|---|---|---|---|---|---|
Source of Isolates | ABPC | CEZ | CTX | GM | ST | TC | LVX | |
Environmental (This study) | 2024 (n = 155) | 0.206 | 0.258 | 0.187 | 0.039 | 0.103 | 0.135 | 0.065 |
2023 (n = 453) | 0.220 | 0.412 | 0.411 | 0.061 | 0.073 | 0.117 | 0.051 | |
Clinical (Kanagawa, 2023) [29] | (n = apr.30000) | 0.435 | 0.276 | 0.207 | 0.099 | 0.174 | - | 0.309 |
Farm animals (Japan, 2022) [30] | Cattle | 0.073 | 0.003 | 0.000 | 0.003 | 0.038 | 0.234 | - |
Pig | 0.375 | 0.015 | 0.007 | 0.029 | 0.301 | 0.551 | - | |
Chicken | 0.239 | 0.021 | 0.007 | 0.021 | 0.197 | 0.430 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urase, T.; Goto, S. A Case Study on Factors Influencing Escherichia coli Concentrations in an Urban River Draining a Fully Sewered Area. Water 2025, 17, 3026. https://doi.org/10.3390/w17203026
Urase T, Goto S. A Case Study on Factors Influencing Escherichia coli Concentrations in an Urban River Draining a Fully Sewered Area. Water. 2025; 17(20):3026. https://doi.org/10.3390/w17203026
Chicago/Turabian StyleUrase, Taro, and Saki Goto. 2025. "A Case Study on Factors Influencing Escherichia coli Concentrations in an Urban River Draining a Fully Sewered Area" Water 17, no. 20: 3026. https://doi.org/10.3390/w17203026
APA StyleUrase, T., & Goto, S. (2025). A Case Study on Factors Influencing Escherichia coli Concentrations in an Urban River Draining a Fully Sewered Area. Water, 17(20), 3026. https://doi.org/10.3390/w17203026