Emerging Microbial and Enzymatic Approaches for Sustainable Antibiotic Biodegradation in Livestock Manure to Mitigate Water Pollution Risks
Abstract
1. Introduction
2. Occurrence and Fate of Antibiotics in Livestock Manure
2.1. Classes of Antibiotics Frequently Detected
2.2. Physicochemical Properties Influencing Microbial Degradation
2.2.1. Macrolides
2.2.2. Fluoroquinolones
2.2.3. Aminoglycosides
2.2.4. Tetracyclines
2.2.5. β-Lactams
2.2.6. Sulphonamides
2.3. Challenges in the Degradation of Antibiotics Using Traditional Manure Treatments
2.3.1. Composting
2.3.2. Anaerobic Digestion
2.3.3. Aerobic Storage and Treatment
2.3.4. Photo-Fenton Oxidation
2.4. Microbial Resistance Pressure and Horizontal Gene Transfer Potential
3. Microbial Communities Involved in Antibiotic Degradation
3.1. Indigenous Manure Microbiota: Taxonomic and Functional Diversity
3.1.1. Cattle Manure Microbiome
3.1.2. Swine Manure Microbiome
3.1.3. Poultry Manure Microbiome
3.2. Identified Antibiotic-Degrading Microbial Genera
3.2.1. Bacteria
3.2.2. Fungi
3.2.3. Archaea
3.3. Factors Affecting Microbial Degradation
3.3.1. Temperature
3.3.2. pH
3.3.3. Oxygen Availability
3.3.4. Moisture and Solids
4. Microbial Enzymes for Antibiotic Inactivation and Biodegradation
4.1. Hydrolases
4.1.1. β-Lactamases
4.1.2. Esterases
4.1.3. Amidases
4.2. Transferases
4.2.1. Acetyltransferases
4.2.2. Phosphotransferases
4.2.3. Nucleotidyltransferases (Adenylyltransferases)
4.3. Oxidoreductases/Monooxygenases
4.3.1. Demethylases
4.3.2. Monooxygenases
4.3.3. Laccases
4.3.4. Peroxidases
4.3.5. Unspecific Peroxygenases
5. Strategies to Enhance Microbial Degradation
5.1. Bioaugmentation with Specialised Degraders
5.2. Biostimulation Using Nutrient Amendments or Carbon Sources
5.3. Enzyme and Microbial Engineering
5.4. Synergistic and Integrated Treatments
6. Omics Approaches to Uncover Microbial Degradation Potential
6.1. Metagenomics
6.2. Metatranscriptomics and Metaproteomics
6.3. Isotope Labelling and Metabolomics
6.4. Systems Biology and Microbial Interaction Networks
7. Challenges and Research Directions
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Spooner, F. Large Amounts of Antibiotics Are Used in Livestock, But Several Countries Have Shown This Doesn’t Have to Be the Case. Our World Data, 9 December 2024. Available online: https://ourworldindata.org/antibiotics-livestock (accessed on 13 September 2025).
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231. [Google Scholar] [CrossRef] [PubMed]
- Barathe, P.; Kaur, K.; Reddy, S.; Shriram, V.; Kumar, V. Antibiotic pollution and associated antimicrobial resistance in the environment. J. Hazard. Mater. Lett. 2024, 5, 100105. [Google Scholar] [CrossRef]
- Lima, T.; Domingues, S.; Da Silva, G.J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef]
- Abraham, A.; Mtewa, A.G.; Chiutula, C.; Mvula, R.L.S.; Maluwa, A.; Eregno, F.E.; Njalam’mano, J. Prevalence of antibiotic-resistant bacteria in manure, soil, and vegetables in urban Blantyre, Malawi, from a farm-to-fork perspective. Int. J. Environ. Res. Public Health 2025, 22, 1273. [Google Scholar] [CrossRef]
- Wen, X.; Chen, M.; Ma, B.; Xu, J.; Zhu, T.; Zou, Y.; Liao, X.; Wang, Y.; Worrich, A.; Wu, Y. Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues. Waste Manag. 2024, 177, 76–85. [Google Scholar] [CrossRef]
- Fang, L.; Lakshmanan, P.; Su, X.; Shi, Y.; Chen, Z.; Zhang, Y.; Sun, W.; Wu, J.; Xiao, R.; Chen, X. Impact of residual antibiotics on microbial decomposition of livestock manures in Eutric Regosol: Implications for sustainable nutrient recycling and soil carbon sequestration. J. Environ. Sci. 2025, 147, 498–511. [Google Scholar] [CrossRef]
- Shawver, S.; Wepking, C.; Ishii, S.; Strickland, M.S.; Badgley, B.D. Application of manure from cattle administered antibiotics has sustained multi-year impacts on soil resistome and microbial community structure. Soil Biol. Biochem. 2021, 157, 108252. [Google Scholar] [CrossRef]
- Khmaissa, M.; Zouari-Mechichi, H.; Sciara, G.; Record, E.; Mechichi, T. Pollution from livestock farming antibiotics: An emerging environmental and human health concern. J. Hazard. Mater. Adv. 2024, 13, 100410. [Google Scholar] [CrossRef]
- Zhao, E.; Li, Y.; Zhang, J.; Geng, B. A review on the degradation of antibiotic resistance genes during composting of livestock manure. Toxics 2025, 13, 667. [Google Scholar] [CrossRef]
- Zubair, M.; Li, Z.; Zhu, R.; Wang, J.; Liu, X.; Liu, X. The antibiotics degradation and its mechanisms during the livestock manure anaerobic digestion. Molecules 2023, 28, 4090. [Google Scholar] [CrossRef] [PubMed]
- Massé, D.I.; Saady, N.M.C.; Gilbert, Y. Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals 2014, 4, 146–163. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F. Fungi for sustainable pharmaceutical remediation: Enzymatic innovations, challenges, and applications—A review. Processes 2025, 13, 1034. [Google Scholar] [CrossRef]
- Khan, M.F.; Hof, C.; Niemcová, P.; Murphy, C.D. Recent advances in fungal xenobiotic metabolism: Enzymes and applications. World J. Microbiol. Biotechnol. 2023, 39, 296. [Google Scholar] [CrossRef]
- Mane, M.B.; Bhandari, V.M.; Balapure, K.; Ranade, V.V. Destroying antimicrobial-resistant bacteria (AMR) and difficult opportunistic pathogens using cavitation and natural oils/plant extracts. Ultrason. Sonochem. 2020, 69, 105272. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Zhi, S.; Zhou, J.; Yang, F.; Tian, L.; Zhang, K. Systematic analysis of occurrence and variation tendency about 58 typical veterinary antibiotics during animal wastewater disposal processes in Tianjin, China. Ecotoxicol. Environ. Saf. 2018, 165, 376–385. [Google Scholar] [CrossRef]
- Lacroix, M.Z.; Ramon-Portugal, F.; Huesca, A.; Angastiniotis, K.; Simitopoulou, M.; Kefalas, G.; Ferrari, P.; Levallois, P.; Fourichon, C.; Wolthuis-Fillerup, M. Residues of veterinary antibiotics in manures from pig and chicken farms in a context of antimicrobial use reduction by implementation of health and welfare plans. Environ. Res. 2023, 238, 117242. [Google Scholar] [CrossRef]
- Patyra, E.; Osiński, Z.; Kwiatek, K. Residues of veterinary antibiotics in solid natural and organic fertilisers—Method development and sample analysis. Environ. Sci. Pollut. Res. 2024, 31, 1–15. [Google Scholar]
- An, J.; Chen, H.; Wei, S.; Gu, J. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China. Environ. Earth Sci. 2015, 74, 5077–5086. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Wang, J.; Wang, J.; Zhu, L.; Ge, W. Macrolide- and quinolone-resistant bacteria and resistance genes as indicators of antibiotic resistance gene contamination in farmland soil with manure application. Ecol. Indic. 2019, 106, 105456. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y.; Li, F.; Li, X.; Liu, H.; Fazilani, S.A.; Guo, W.; Xu, G.; Zhang, X. The prevalence and mechanism of fluoroquinolone resistance in Escherichia coli isolated from swine farms in China. BMC Vet. Res. 2020, 16, 258. [Google Scholar] [CrossRef] [PubMed]
- Rasschaert, G.; Elst, D.; Colson, L. Antibiotic residues and antibiotic-resistant bacteria in pig slurry used to fertilise agricultural fields. Antibiotics 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, H.; Li, S.; Li, C.; Ma, Y. The presence of tetracyclines and sulfonamides in swine feeds and faeces: Dependence on the antibiotic type and swine growth stages. Environ. Sci. Pollut. Res. 2020, 27, 43093–43102. [Google Scholar] [CrossRef]
- Joseph, M.W.; Moturi, W.N.; Ogendi, G.M. Assessment of veterinary antibiotic use and occurrence of veterinary antibiotics in livestock manure from farms in Rongai Sub-County, Kenya. Curr. World Environ. 2024, 19, 778. [Google Scholar] [CrossRef]
- Topi, D.; Spahiu, J. Presence of veterinary antibiotics in livestock manure in two Southeastern Europe countries, Albania and Kosovo. Environ. Sci. Pollut. Res. 2020, 27, 44552–44560. [Google Scholar] [CrossRef]
- Du, T.; Feng, L.; Zhen, X. Microbial community structures and antibiotic biodegradation characteristics during anaerobic digestion of chicken manure containing residual enrofloxacin. J. Environ. Sci. Health B 2022, 57, 102–113. [Google Scholar] [CrossRef]
- Leal, R.M.P.; Figueira, R.F.; Tornisielo, V.L.; Regitano, J.B. Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil. Sci. Total Environ. 2012, 432, 344–349. [Google Scholar] [CrossRef]
- Ge, L.; Cui, N.; Halsall, C.; Yang, Y.; Cao, S.; Zhang, P. Exploring the aqueous photodegradation of three ionisable macrolide antibiotics: Kinetics, intermediates and photoinduced toxicity. J. Water Process Eng. 2024, 62, 105383. [Google Scholar] [CrossRef]
- Lenz, K.D.; Klosterman, K.E.; Mukundan, H.; Kubicek-Sutherland, J.Z. Macrolides: From toxins to therapeutics. Toxins 2021, 13, 347. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Z.; Pu, Q.; Li, X.; Cui, Y.; Yang, H.; Li, Y. Identification and mechanistic analysis of toxic degradation products in the advanced oxidation pathways of fluoroquinolone antibiotics. Toxics 2024, 12, 203. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Chang, J.; Fu, B.; Wang, H. Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: Removal, mechanism, and influencing factors. Sci. Total Environ. 2023, 857, 159172. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, X.; Chen, L.; Han, Y.; Shen, Y.; Chen, B.; Wang, M. Deglycosylation inactivation initiated by a novel periplasmic dehydrogenase complex provides a novel strategy for eliminating the recalcitrant antibiotic kanamycin. Environ. Sci. Technol. 2023, 57, 4298–4307. [Google Scholar] [CrossRef] [PubMed]
- Moharrami, E.; Keshipour, S. Photocatalytic degradation of tetracycline antibiotic using nitrogen-doped reduced graphene oxide-supported titania/platinum nanoparticles. NPJ Mater. Degrad. 2025, 9, 57. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Kato, G.; Mitome, H.; Takeda, S.; Hidaka, N.; Tanaka, M.; Akira, K. Study on the chemical stability of β-lactam antibiotics in concomitant simple suspensions with magnesium oxide. J. Pharm. Health Care Sci. 2024, 10, 73. [Google Scholar] [CrossRef]
- Pu, H.; Chen, J.; Luo, J.; Yi, J. Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: A DFT study. Chemosphere 2018, 197, 569–575. [Google Scholar] [CrossRef]
- Topp, E.; Renaud, J.; Sumarah, M.; Sabourin, L. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field. Sci. Total Environ. 2016, 562, 136–144. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Waigi, M.G.; Gudda, F.O.; Cheng, P.; Ling, W. Simultaneous removal of estrogens and antibiotics from livestock manure using Fenton oxidation technique. Catalysts 2019, 9, 644. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, A.; Chen, S.; He, X.; Jin, L.; Yu, X.; Yang, S.; Li, B.; Fan, L.; Ji, L. Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilised soil. J. Environ. Manag. 2020, 257, 109980. [Google Scholar] [CrossRef]
- Yang, B.; Meng, L.; Xue, N. Removal of five fluoroquinolone antibiotics during broiler manure composting. Environ. Technol. 2018, 39, 373–381. [Google Scholar] [CrossRef]
- Kasumba, J.; Appala, K.; Agga, G.E.; Loughrin, J.H.; Conte, E.D. Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. J. Environ. Sci. Health B 2020, 55, 135–147. [Google Scholar] [CrossRef]
- Massini, G.; Barra Caracciolo, A.; Rauseo, J.; Spataro, F.; Scordo, G.; Patrolecco, L.; Garbini, G.L.; Visca, A.; Grenni, P.; Rolando, L. Anaerobic digestion of cattle manure contaminated with an antibiotic mixture: A nature-based solution for environmental management. Land 2025, 14, 353. [Google Scholar] [CrossRef]
- Yang, X.; Sun, P.; Liu, B.; Ahmed, I.; Xie, Z.; Zhang, B. Effect of extending high-temperature duration on ARG rebound in a co-composting process for organic wastes. Sustainability 2024, 16, 5284. [Google Scholar] [CrossRef]
- Wallace, J.S.; Garner, E.; Pruden, A.; Aga, D.S. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. Environ. Pollut. 2018, 236, 764–772. [Google Scholar] [CrossRef]
- Black, Z.; Balta, I.; Black, L.; Naughton, P.J.; Dooley, J.S.; Corcionivoschi, N. The fate of foodborne pathogens in manure-treated soil. Front. Microbiol. 2021, 12, 781357. [Google Scholar] [CrossRef] [PubMed]
- Larsson, Y.; Nikolausz, M.; Møller, H.B.; Bester, K. Removal of antibiotic and disinfectant compounds from digested pig manure by an aerobic hybrid biofilm process. Sci. Total Environ. 2025, 982, 179600. [Google Scholar] [CrossRef]
- Lima, K.V.; Nogueira, R.F.P.; Sousa, É.M.; Simões, M.M.; Lima, D.L.; Calisto, V. Magnetic activated carbon for improving the removal of antibiotics by heterogeneous solar photo-Fenton at circumneutral pH. Water Res. 2025, 248, 123679. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Hu, H.-W.; Gou, M.; Wang, J.-T.; Chen, D.; He, J.-Z. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ. Pollut. 2017, 231, 1621–1632. [Google Scholar] [CrossRef]
- Qian, X.; Gunturu, S.; Sun, W.; Cole, J.R.; Norby, B.; Gu, J.; Tiedje, J.M. Long-read sequencing revealed co-occurrence, host range, and potential mobility of antibiotic resistome in cow faeces. Proc. Natl. Acad. Sci. USA 2021, 118, e2024464118. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Valera, E.; Kyselková, M.; Ahmed, E.; Sladecek, F.X.J.; Goberna, M.; Elhottová, D. Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Sci. Rep. 2019, 9, 6760. [Google Scholar] [CrossRef] [PubMed]
- Macedo, G.; Olesen, A.K.; Maccario, L.; Hernandez Leal, L.; van der Maas, P.; Heederik, D.; Mevius, D.; Sørensen, S.J.; Schmitt, H. Horizontal gene transfer of an IncP1 plasmid to soil bacterial community introduced by Escherichia coli through manure amendment in soil microcosms. Environ. Sci. Technol. 2022, 56, 11398–11408. [Google Scholar] [CrossRef] [PubMed]
- Checcucci, A.; Buscaroli, E.; Modesto, M.; Luise, D.; Blasioli, S.; Scarafile, D.; Di Vito, M.; Bugli, F.; Trevisi, P.; Braschi, I. The swine waste resistome: Spreading and transfer of antibiotic resistance genes in Escherichia coli strains and the associated microbial communities. Ecotoxicol. Environ. Saf. 2024, 283, 116774. [Google Scholar] [CrossRef]
- Minkina, T.; Sushkova, S.; Delegan, Y.; Bren, A.; Mazanko, M.; Kocharovskaya, Y.; Filonov, A.; Rajput, V.D.; Mandzhieva, S.; Rudoy, D. Effect of chicken manure on soil microbial community diversity in poultry keeping areas. Environ. Geochem. Health 2023, 45, 9303–9319. [Google Scholar] [CrossRef]
- Günel, G.; İnce, O.; Uzun, Ö.; Erdem, E.I.; İnce, B. Enhancing biomethane production from cattle manure by integrating rumen bacteria: A microbial analysis with next-generation sequencing and quantitative PCR. Biomass Convers. Biorefin. 2025, 1–15. [Google Scholar] [CrossRef]
- Shi, J.; Su, H.; He, S.; Dai, S.; Mao, H.; Wu, D. Pan-Genomic Insights into Rumen Microbiome-Mediated Short-Chain Fatty Acid Production and Regulation in Ruminants. Microorganisms 2025, 13, 1175. [Google Scholar] [CrossRef]
- Chen, T.; Xie, G.; Mi, J.; Wen, X.; Cao, Z.; Ma, B.; Zou, Y.; Zhang, N.; Wang, Y.; Liao, X. Recovery of the structure and function of the pig manure bacterial community after enrofloxacin exposure. Microbiol. Spectr. 2022, 10, e02004-21. [Google Scholar] [CrossRef]
- Ramesh, A.; Bailey, E.S.; Ahyong, V.; Langelier, C.; Phelps, M.; Neff, N.; Sit, R.; Tato, C.; DeRisi, J.L.; Greer, A.G. Metagenomic characterisation of swine slurry in a North American swine farm operation. Sci. Rep. 2021, 11, 16994. [Google Scholar] [CrossRef]
- Ercoli, L.; Rossetto, R.; Di Giorgi, S.; Raffaelli, A.; Nuti, M.; Pellegrino, E. Effective bioremediation of clarithromycin and diclofenac in wastewater by microbes and Arundo donax L. Environ. Sci. Pollut. Res. 2023, 30, 77193–77209. [Google Scholar] [CrossRef]
- Ren, J.; Qi, X.; Zhang, J.; Niu, D.; Shen, Y.; Yu, C.; Zhi, J.; Wang, C.; Jiang, X.; Zhang, W. Biodegradation efficiency and mechanism of erythromycin degradation by Paracoccus versutus W7. J. Environ. Manag. 2023, 332, 117372. [Google Scholar] [CrossRef]
- Ren, J.; Ni, S.; Shen, Y.; Niu, D.; Sun, R.; Wang, C.; Deng, L.; Zhang, Q.; Tang, Y.; Jiang, X. Characterization of the erythromycin degradation pathway and related enzyme in Rhodococcus gordoniae rjjtx-2. J. Clean. Prod. 2022, 379, 134758. [Google Scholar] [CrossRef]
- Chen, X.; Yu, M.; Song, G.; Ma, X.; Jiang, H.; Lu, J. Simultaneous degradation of roxithromycin and nitrogen removal by Acinetobacter pittii TR1: Performances, pathways, and mechanisms. J. Environ. Manag. 2025, 374, 123890. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Z.; Deng, L.; Niu, D.; Fan, B.; Huhe, T.; Li, Z.; Zhang, J.; Li, C. Biodegradation of erythromycin by Delftia lacustris RJJ-61 and characterization of its erythromycin esterase. J. Basic Microbiol. 2021, 61, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Oberoi, A.S.; He, Z.; Khanal, S.K.; Lu, H. Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism. Water Res. 2021, 191, 116808. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.-J.; Li, J.; Li, C.-X.; Tang, X.-D.; Yu, G.-W.; Wang, Y. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. J. Hazard. Mater. 2018, 343, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Heinze, T.M.; Kim, B.-S.; Schnackenberg, L.K.; Woodling, K.A.; Sutherland, J.B. Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant. Appl. Environ. Microbiol. 2011, 77, 6100–6108. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, W.; Yan, X.; Ding, Q.; Liu, J.; Cheng, B.; Duan, T. Efficient degradation of neomycin by Bacillus velezensis and Cupriavidus basilensis isolated from mangrove soil and pharmaceutical wastewater. Front. Microbiol. 2025, 16, 1544888. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, H.; Li, Z.; Feng, Y.; Cheng, D.; Xue, J. Biodegradation of gentamicin by bacterial consortia AMQD4 in synthetic medium and raw gentamicin sewage. Sci. Rep. 2017, 7, 11004. [Google Scholar] [CrossRef]
- Klein, D.; Pramer, D. Bacterial dissimilation of streptomycin. J. Bacteriol. 1961, 82, 505–510. [Google Scholar] [CrossRef]
- Farag, A.M.; Ghonam, H.E.; El-Borai, A.M. Eco-friendly biotransformation of penicillin G by free and immobilized marine halophilic Bacillus pseudomycoides AH1. Ann. Microbiol. 2024, 74, 30. [Google Scholar] [CrossRef]
- Volkers, G.; Palm, G.J.; Weiss, M.S.; Wright, G.D.; Hinrichs, W. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett. 2011, 585, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Sudha, S.; Parthasarathi, N.; Prabha, D.; Velmurugan, P.; Sivakumar, S.; Anitha, V.; Shrestha, A.; Chinnathambi, A.; Alharb, S.A.; Lakshmanaperumalsamy, P. Oxytetracycline degrading potential of Lysinibacillus sp. strain 3+I isolated from poultry manure. Evid. Based Complement. Altern. Med. 2022, 2022, 2750009. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, X.; Chen, Z.; Shen, J.; Jiang, F.; Wang, X.; Kang, J. Isolation of oxytetracycline-degrading bacteria and its application in improving the removal performance of aerobic granular sludge. J. Environ. Manag. 2020, 272, 111115. [Google Scholar] [CrossRef]
- Xue, W.; Li, F.; Zhou, Q. Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell. Bioresour. Technol. 2019, 289, 121632. [Google Scholar] [CrossRef]
- Song, J.; Hao, G.; Liu, L.; Zhang, H.; Zhao, D.; Li, X.; Yang, Z.; Xu, J.; Ruan, Z.; Mu, Y. Biodegradation and metabolic pathway of sulfamethoxazole by Sphingobacterium mizutaii. Sci. Rep. 2021, 11, 23130. [Google Scholar] [CrossRef]
- Ahmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021, 33, 64. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Mohisn, A.; Zhang, G.; Wang, Z.; Wu, S. Biodegradation of penicillin G sodium by Sphingobacterium sp. SQW1: Performance, degradation mechanism, and key enzymes. J. Hazard. Mater. 2024, 468, 133485. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Peng, M.-W.; Qing, T.; Feng, B.; Zhang, P. Amoxicillin degradation and high-value extracellular polymer recovery by algal-bacterial symbiosis systems. J. Hazard. Mater. 2023, 460, 132344. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Liu, Y.; Wan, Z.; Guo, X.; Lu, S.; Qiu, D. Sulfamethoxazole degradation by Pseudomonas silesiensis F6a isolated from bioelectrochemical technology-integrated constructed wetlands. Ecotoxicol. Environ. Saf. 2022, 240, 113698. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp. Appl. Microbiol. Biotechnol. 2018, 102, 425–432. [Google Scholar] [CrossRef]
- Plaisance, A.; Wayment, D.; Raje, H.; Boopathy, R. Biodegradation of sulfamethoxazole by a bacterium isolated from the Hurricane overtop sediments. Bioresour. Technol. Rep. 2024, 27, 101926. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Lv, M.; Wang, X.; Chen, L. Sulfamethoxazole degradation by Aeromonas caviae and co-metabolism by the mixed bacteria. Chemosphere 2023, 317, 137882. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, H.; Jiang, Y.; Lv, M.; Wang, X.; Chen, L. Biotransformation mechanism of Vibrio diabolicus to sulfamethoxazole at transcriptional level. J. Hazard. Mater. 2021, 411, 125023. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, W.; Mao, L.; Yin, D.; Niu, D.; Taoli, H.; Wang, C.; Liu, Q.; Ren, J. Immobilization of Peniophora incarnata F1 in PVA-SA-biochar matrix and its degradation performance and mechanism for erythromycin degradation. J. Environ. Manag. 2025, 375, 124297. [Google Scholar] [CrossRef]
- Hultberg, M.; Golovko, O. Use of sawdust for production of ligninolytic enzymes by white-rot fungi and pharmaceutical removal. Bioproc. Biosyst. Eng. 2024, 47, 475–482. [Google Scholar] [CrossRef]
- Tan, Z.; Beltrán-Flores, E.; Ramos-Meza, G.D.; Alonso, L.L.; Sarrà, M. Eliminating antibiotics by white-rot fungi Trametes versicolor from manure solids and synthetic wastewater. Environ. Pollut. 2025, 378, 126504. [Google Scholar] [CrossRef]
- Akrout, I.; Staita, K.; Zouari-Mechichi, H.; Ghariani, B.; Khmaissa, M.; Navarro, D.; Doan, A.; Albert, Q.; Faulds, C.; Sciara, G. Valorizing fungal diversity for the degradation of fluoroquinolones. Heliyon 2024, 10, e25649. [Google Scholar] [CrossRef]
- Stenholm, Å.; Hedeland, M.; Pettersson, C.E. Neomycin removal using the white rot fungus Trametes versicolor. J. Environ. Sci. Health Part A 2022, 57, 436–447. [Google Scholar] [CrossRef]
- Tan, H.; Kong, D.; Ma, Q.; Li, Q.; Zhou, Y.; Jiang, X.; Wang, Z.; Parales, R.E.; Ruan, Z. Biodegradation of tetracycline antibiotics by the yeast strain Cutaneotrichosporon dermatis M503. Microorganisms 2022, 10, 565. [Google Scholar] [CrossRef]
- Ghariani, B.; Alessa, A.H.; Ben Atitallah, I.; Louati, I.; Alsaigh, A.A.; Mechichi, T.; Zouari-Mechichi, H. Fungal bioremediation of the β-lactam antibiotic ampicillin under laccase-induced conditions. Antibiotics 2024, 13, 407. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Liu, M.; Yang, Z.; Wu, D.; Chen, F.; Wang, J.; Zhu, Z.; Wang, L. The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Environ. Res. 2023, 216, 114419. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-W.; Tsai, L.-L.; Chang, B.-V. Anaerobic degradation of sulfamethoxazole in mangrove sediments. Sci. Total Environ. 2018, 643, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Espinosa, R.M. Halophilic archaea as tools for bioremediation technologies. Appl. Microbiol. Biotechnol. 2024, 108, 401. [Google Scholar] [CrossRef]
- Khelaifia, S.; Drancourt, M. Susceptibility of archaea to antimicrobial agents: Applications to clinical microbiology. Clin. Microbiol. Infect. 2012, 18, 841–848. [Google Scholar] [CrossRef]
- Wang, B.; Ni, B.-J.; Yuan, Z.; Guo, J. Cometabolic biodegradation of cephalexin by enriched nitrifying sludge: Process characteristics, gene expression and product biotoxicity. Sci. Total Environ. 2019, 672, 275–282. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, J.; Chen, H.; Wang, J.; Sun, W.; Zhang, X.; Yang, Y.; Wang, Q.; Ma, J. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Sci. Total Environ. 2017, 607, 725–732. [Google Scholar] [CrossRef]
- Proskynitopoulou, V.; Vourros, A.; Garagounis, I.; Toursidis, P.D.; Lorentzou, S.; Kougias, P.; Zouboulis, A.; Panopoulos, K.D. Treatment of anaerobically digested pig manure by applying membrane processes for nutrient recovery and antibiotics removal. Environ. Sci. Pollut. Res. 2024, 1–13. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, J.; Tian, S.; Liu, C.; Liu, L.; Wei, L.; Fan, H.; Zhang, T.; Wang, L.; Zhu, G. Higher temperatures do not always achieve better antibiotic resistance gene removal in anaerobic digestion of swine manure. Appl. Environ. Microbiol. 2019, 85, e02878-18. [Google Scholar] [CrossRef]
- Lin, H.; Sun, W.; Yu, Q.; Ma, J. Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Environ. Pollut. 2020, 263, 114439. [Google Scholar] [CrossRef]
- Li, M.M.; Ray, P.; Knowlton, K.F.; Pruden, A.; Xia, K.; Teets, C.; Du, P. Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Sci. Total Environ. 2020, 710, 136310. [Google Scholar] [CrossRef]
- Riaz, L.; Wang, Q.; Yang, Q.; Li, X.; Yuan, W. Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Sci. Total Environ. 2020, 718, 137414. [Google Scholar] [CrossRef]
- Hosseini Taleghani, A.; Lim, T.-T.; Lin, C.-H.; Ericsson, A.C.; Vo, P.H. Degradation of veterinary antibiotics in swine manure via anaerobic digestion. Bioengineering 2020, 7, 123. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Ma, J.; Sun, W.; Yang, Y.; Zhang, X. Compost-bulking agents reduce the reservoir of antibiotics and antibiotic resistance genes in manures by modifying bacterial microbiota. Sci. Total Environ. 2019, 649, 396–404. [Google Scholar] [CrossRef]
- De Pascale, G.; Wright, G.D. Antibiotic resistance by enzyme inactivation: From mechanisms to solutions. ChemBioChem 2010, 11, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Lohans, C.T.; Freeman, E.I.; Groesen, E.V.; Tooke, C.L.; Hinchliffe, P.; Spencer, J.; Brem, J.; Schofield, C.J. Mechanistic insights into β-lactamase-catalysed carbapenem degradation through product characterisation. Sci. Rep. 2019, 9, 13608. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Ahmad, S.; Irudayaraj, J. Dynamic effect of β-lactam antibiotic inactivation due to the inter- and intra-species interaction of drug-resistant microbes. ACS Biomater. Sci. Eng. 2024, 10, 1461–1472. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Ismail, N. Biodegradation of pharmaceutical wastes in treated sewage effluents by Bacillus subtilis 1556WTNC. Environ. Process. 2014, 1, 459–481. [Google Scholar] [CrossRef]
- Chu, L.; Chen, D.; Wang, J.; Yang, Z.; Yang, Q.; Shen, Y. Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. J. Hazard. Mater. 2020, 382, 121058. [Google Scholar] [CrossRef]
- Wang, J.; Zhuan, R.; Chu, L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ. 2019, 646, 1385–1397. [Google Scholar] [CrossRef]
- Escamilla, P.; Bartella, L.; Sanz-Navarro, S.; Percoco, R.M.; Di Donna, L.; Prejanò, M.; Marino, T.; Ferrando-Soria, J.; Armentano, D.; Leyva-Pérez, A.; et al. Degradation of penicillinic antibiotics and β-lactamase enzymatic catalysis in a biomimetic Zn-based metal–organic framework. Chem.–Eur. J. 2023, 29, e202301325. [Google Scholar] [CrossRef]
- Larsen, E.M.; Johnson, R.J. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev. Res. 2019, 80, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L.; Walton, R.B.; Newkirk, J.F.; Miller, I.M. Microbial degradation of cephalosporin C. Nature 1963, 199, 909–910. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, M.; Park, J.; Sleno, B.; Berghuis, A.M. Structural and functional insights into esterase-mediated macrolide resistance. Nat. Commun. 2021, 12, 1732. [Google Scholar] [CrossRef]
- Lin, J.; Lv, H.; Wang, T.; Tao, H.; Zhong, Y.; Zhou, Y.; Tang, Y.; Xie, F.; Zhuang, G.; Xu, C.; et al. The global distribution of the macrolide esterase EstX from the alpha/beta hydrolase superfamily. Commun. Biol. 2024, 7, 781. [Google Scholar] [CrossRef]
- De Cazes, M.; Belleville, M.P.; Petit, E.; Salomo, M.; Bayer, S.; Czaja, R.; De Gunzburg, J.; Sanchez-Marcano, J. Erythromycin degradation by esterase (EreB) in enzymatic membrane reactors. Biochem. Eng. J. 2016, 114, 70–78. [Google Scholar] [CrossRef]
- Singh, R.; Shahul, R.; Kumar, V.; Yadav, A.K.; Mehta, P.K. Microbial amidases: Characterization, advances and biotechnological applications. Biotechnol. Notes 2024, 6, 44–58. [Google Scholar] [CrossRef]
- Qian, Y.; Lai, L.; Cheng, M.; Fang, H.; Fan, D.; Zylstra, G.J.; Huang, X. Identification, characterization, and distribution of novel amidase gene aphA in sphingomonads conferring resistance to amphenicol antibiotics. Appl. Environ. Microbiol. 2024, 90, e01512-24. [Google Scholar] [CrossRef]
- Pennartz, A.; Généreux, C.; Parquet, C.; Mengin-Lecreulx, D.; Joris, B. Substrate-induced inactivation of the Escherichia coli AmiD N-acetylmuramoyl-L-alanine amidase highlights a new strategy to inhibit this class of enzyme. Antimicrob. Agents Chemother. 2009, 53, 2991–2997. [Google Scholar] [CrossRef]
- Sanz-García, F.; Anoz-Carbonell, E.; Pérez-Herrán, E.; Martín, C.; Lucía, A.; Rodrigues, L.; Aínsa, J.A. Mycobacterial aminoglycoside acetyltransferases: A little of drug resistance, and a lot of other roles. Front. Microbiol. 2019, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Reeves, C.M.; Magallon, J.; Rocha, K.; Tran, T.; Phan, K.; Vu, P.; Yi, Y.; Oakley-Havens, C.L.; Cedano, J.; Jimenez, V.; et al. Aminoglycoside 6′-N-acetyltransferase type Ib [AAC (6′)-Ib]-mediated aminoglycoside resistance: Phenotypic conversion to susceptibility by silver ions. Antibiotics 2020, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, L.; Sha, Y.; Chen, Q.; Lin, N.; Zhao, J.; Zhang, Y.; Ji, Y.; Jiang, W.; Zhang, X.; et al. Identification and characterization of a novel 6′-N-aminoglycoside acetyltransferase AAC (6′)-Va from a clinical isolate of Aeromonas hydrophila. Front. Microbiol. 2023, 14, 1229593. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sony, S.A.; Chowdhury, M.B.; Ullah, M.M.; Paul, S.; Hossain, T. Retention of antibiotic activity against resistant bacteria harbouring aminoglycoside-N-acetyltransferase enzyme by adjuvants: A combination of in-silico and in-vitro study. Sci. Rep. 2020, 10, 19381. [Google Scholar] [CrossRef]
- Kim, D.W.; Feng, J.; Chen, H.; Kweon, O.; Gao, Y.; Yu, L.R.; Burrowes, V.J.; Sutherland, J.B. Identification of the enzyme responsible for N-acetylation of norfloxacin by Microbacterium sp. strain 4N2-2. Appl. Environ. Microbiol. 2013, 79, 314–321. [Google Scholar] [CrossRef]
- Moffa, M.; Brook, I. Tetracyclines, glycylcyclines, and chloramphenicol. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier: Philadelphia, PA, USA, 2015; pp. 322–338. [Google Scholar]
- Dash, A.; Modak, R. Protein acetyltransferases mediate bacterial adaptation to a diverse environment. J. Bacteriol. 2021, 203, e00128-21. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; A Syed, S.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Duman, M.; Saticioglu, I.B.; Buyukekiz, A.G.; Balta, F.; Altun, S. Molecular characterization and antimicrobial resistance profile of atypical Citrobacter gillenii and Citrobacter sp. isolated from diseased rainbow trout (Oncorhynchus mykiss). J. Global Antimicrob. Resist. 2017, 10, 136–142. [Google Scholar] [CrossRef]
- Lin, N.; Sha, Y.; Zhang, G.; Song, C.; Zhang, Y.; Zhao, J.; Huang, D.; Lu, J.; Bao, Q.; Pan, W. APH (3′)-Ie, an aminoglycoside-modifying enzyme discovered in a rabbit-derived Citrobacter gillenii isolate. Front. Cell. Infect. Microbiol. 2024, 14, 1435123. [Google Scholar] [CrossRef]
- Latorre, M.; Revuelta, J.; García-Junceda, E.; Bastida, A. 6-O-Nucleotidyltransferase: An aminoglycoside-modifying enzyme specific for streptomycin/streptidine. MedChemComm 2016, 7, 177–183. [Google Scholar] [CrossRef]
- Cox, G.; Stogios, P.J.; Savchenko, A.; Wright, G.D. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT (2″)-Ia. mBio 2015, 6, e00128-15. [Google Scholar] [CrossRef]
- Martí, S.; Bastida, A.; Świderek, K. Theoretical studies on mechanism of inactivation of kanamycin A by 4′-O-Nucleotidyltransferase. Front. Chem. 2019, 6, 660. [Google Scholar] [CrossRef] [PubMed]
- Morar, M.; Bhullar, K.; Hughes, D.W.; Junop, M.; Wright, G.D. Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB. Structure 2009, 17, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Zhou, C.; Sørensen, S.R.; Zhang, J.; He, J.; Yu, P.; Yan, X.; Li, S. The novel bacterial N-demethylase PdmAB is responsible for the initial step of N,N-dimethyl-substituted phenylurea herbicide degradation. Appl. Environ. Microbiol. 2013, 79, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
- Studenik, S.; Vogel, M.; Diekert, G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J. Bacteriol. 2012, 194, 3317–3326. [Google Scholar] [CrossRef]
- Berg-Candolfi, M.; Candolfi, E. Depression of the N-demethylation of erythromycin, azithromycin, clarithromycin and clindamycin in murine Toxoplasma infection. Int. J. Parasitol. 1996, 26, 1321–1323. [Google Scholar] [CrossRef]
- Gasparrini, A.J.; Markley, J.L.; Kumar, H.; Wang, B.; Fang, L.; Irum, S.; Symister, C.T.; Wallace, M.; Burnham, C.A.D.; Andleeb, S.; et al. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Commun. Biol. 2020, 3, 241. [Google Scholar] [CrossRef]
- Markley, J.L.; Wencewicz, T.A. Tetracycline-inactivating enzymes. Front. Microbiol. 2018, 9, 1058. [Google Scholar] [CrossRef]
- He, Q.; Cui, C.Y.; Zhang, X.J.; Lin, Z.Y.; Jia, Q.L.; Li, C.; Ren, H.; Cai, D.T.; Zheng, Z.J.; Long, T.F.; et al. Reducing tetracycline antibiotics residues in aqueous environments using Tet(X) degrading enzymes expressed in Pichia pastoris. Sci. Total Environ. 2021, 799, 149360. [Google Scholar] [CrossRef]
- Ricken, B.; Kolvenbach, B.A.; Bergesch, C.; Benndorf, D.; Kroll, K.; Strnad, H.; Vlček, Č.; Adaixo, R.; Hammes, F.; Shahgaldian, P.; et al. FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Sci. Rep. 2017, 7, 15783. [Google Scholar] [CrossRef]
- Kim, D.W.; Thawng, C.N.; Lee, K.; Wellington, E.M.; Cha, C.J. A novel sulfonamide resistance mechanism by two-component flavin-dependent monooxygenase system in sulfonamide-degrading actinobacteria. Environ. Int. 2019, 127, 206–215. [Google Scholar] [CrossRef]
- Khan, M.F.; Liao, J.; Liu, Z.; Chugh, G. Bacterial cytochrome P450 involvement in the biodegradation of fluorinated pyrethroids. J. Xenobiotics 2025, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Murphy, C.D. Cytochrome P450 5208A3 is a promiscuous xenobiotic biotransforming enzyme in Cunninghamella elegans. Enzyme Microb. Technol. 2022, 161, 110102. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Murphy, C.D. Cunninghamella spp. produce mammalian-equivalent metabolites from fluorinated pyrethroid pesticides. AMB Express 2021, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Murphy, C.D. Fluorotelomer alcohols are efficiently biotransformed by Cunninghamella elegans. Environ. Sci. Pollut. Res. 2023, 30, 23613–23623. [Google Scholar] [CrossRef]
- Khan, M.F.; Paul Guin, J.; Thampi, R.K.; Sullivan, J.A.; Murphy, C.D. Enhanced removal of perfluorooctanoic acid with sequential photocatalysis and fungal treatment. Environ. Sci. Pollut. Res. 2023, 30, 91478–91486. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, L.; Lin, X. Laccase-based self-amplifying catalytic system enables efficient antibiotic degradation for sustainable environmental remediation. Adv. Sci. 2023, 10, 2300210. [Google Scholar] [CrossRef]
- Harguindeguy, M.; Pochat-Bohatier, C.; Sanchez-Marcano, J.; Belleville, M.P. Enzymatic degradation of tetracycline by Trametes versicolor laccase in a fluidized bed reactor. Sci. Total Environ. 2024, 907, 168152. [Google Scholar] [CrossRef]
- Becker, D.; Della Giustina, S.V.; Rodriguez-Mozaz, S.; Schoevaart, R.; Barceló, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; de Gunzburg, J.; Couillerot, O.; et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase–degradation of compounds does not always eliminate toxicity. Bioresour. Technol. 2016, 219, 500–509. [Google Scholar] [CrossRef]
- Khan, M.F.; Murphy, C.D. Environmental remediation by novel nanomaterials and fungi with high-degradation capacity of hazardous contaminants. In Bio and Nanoremediation of Hazardous Environmental Pollutants; Fernández Luqueño, F., López-Valdez, F., Medina Pérez, G., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 283–310. [Google Scholar]
- Sung, H.J.; Khan, M.F.; Kim, Y.H. Recombinant lignin peroxidase-catalyzed decolorization of melanin using in-situ generated H2O2 for application in whitening cosmetics. Int. J. Biol. Macromol. 2019, 136, 20–26. [Google Scholar] [CrossRef]
- Son, H.; Seo, H.; Han, S.; Kim, S.M.; Pham, L.T.M.; Khan, M.F.; Sung, H.J.; Kang, S.H.; Kim, K.J.; Kim, Y.H. Extra disulfide and ionic salt bridge improves the thermostability of lignin peroxidase H8 under acidic condition. Enzyme Microb. Technol. 2021, 148, 109803. [Google Scholar] [CrossRef]
- Wen, X.; Jia, Y.; Li, J. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium–a white rot fungus. Chemosphere 2009, 75, 1003–1007. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Esmail, G.A.; Arasu, M.V. Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor. Chemosphere 2021, 268, 128726. [Google Scholar] [CrossRef]
- Nawaz, M.Z.; Khalid, H.R.; Mirza, M.U.; Xu, L.; Haider, S.Z.; Al-Ghanim, K.A.; Barceló, D.; Zhu, D. Elucidating the bioremediation potential of laccase and peroxidase enzymes from Bacillus ligniniphilus L1 in antibiotic degradation: A computationally guided study. Bioresour. Technol. 2024, 413, 131520. [Google Scholar] [CrossRef]
- De Boer, S.R.; Schäffer, A.; Moreira, M.T. Towards oxidoreductase-based processes for the removal of antibiotics from wastewater. Rev. Environ. Sci. Biotechnol. 2023, 22, 899–932. [Google Scholar] [CrossRef]
- De Boer, S.; Sastre, D.; Castillo, A.; Mendez, S.B.; Hollmann, F.; Lores, M.; Schaeffer, A.; Moreira, M.T. Advancing the enzymatic removal of antibiotics with unspecific peroxygenase and vanadium chloroperoxidase. J. Environ. Chem. Eng. 2025, 13, 115795. [Google Scholar] [CrossRef]
- Zhao, C.; Xin, L.; Xu, X.; Qin, Y.; Wu, W. Dynamics of antibiotics and antibiotic resistance genes in four types of kitchen waste composting processes. J. Hazard. Mater. 2022, 424, 127526. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yu, J.; Li, C.; Zhu, Q.; Zhang, Y.; Lichtfouse, E.; Marmier, N. The effect review of various biological, physical and chemical methods on the removal of antibiotics. Water 2022, 14, 3138. [Google Scholar] [CrossRef]
- Goulas, A.; Livoreil, B.; Grall, N.; Benoit, P.; Couderc-Obert, C.; Dagot, C.; Patureau, D.; Petit, F.; Laouénan, C.; Andremont, A. What are the effective solutions to control the dissemination of antibiotic resistance in the environment? A systematic review protocol. Environ. Evid. 2018, 7, 3. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, J.; Liu, Y.; Chen, L.; Xu, Y.; Zou, Y.; Li, Y.; Gong, B. The survival and removal mechanism of Sphingobacterium changzhouense TC931 under tetracycline stress and its ecological safety after application. Bioresour. Technol. 2021, 333, 125067. [Google Scholar] [CrossRef]
- Li, Y.; Gu, J.; Zhang, S.-Q.; Shi, L.-X.; Sun, W.; Qian, X.; Duan, M.-L.; Yin, Y.-N.; Wang, X.-J. Effects of adding compound microbial inoculum on microbial community diversity and enzymatic activity during co-composting. Environ. Eng. Sci. 2018, 35, 270–278. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, L.; Cai, Q.; Xu, Y.; Xie, Z.; Liu, J.; Ning, X. Simultaneous reduction of antibiotics and antibiotic resistance genes in pig manure using a composting process with a novel microbial agent. Ecotoxicol. Environ. Saf. 2021, 208, 111724. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Xiong, J.; Yang, Z.; Han, L.; Huang, G. Exploring the impact of biochar on antibiotics and antibiotic resistance genes in pig manure aerobic composting through untargeted metabolomics and metagenomics. Bioresour. Technol. 2022, 352, 127118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Qiu, X.; Wu, X.; Lu, S. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite. J. Hazard. Mater. 2021, 408, 124883. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Liu, F.; Tian, Y.; Zhang, J.; Liu, H.; Duan, J.; Bi, W.; Qin, J.; Xu, S. Effect of biochar on antibiotics and antibiotic resistance genes variations during co-composting of pig manure and corn straw. Front. Bioeng. Biotechnol. 2022, 10, 960476. [Google Scholar] [CrossRef]
- Liu, P.; Sun, M.; Xia, S.; Ju, J.; Mao, W.; Zhao, H.; Hao, Y. Earthworms and lactic acid bacteria (LAB) cooperate to promote the biodegradation of tetracycline residues in livestock manure. Waste Manag. 2024, 186, 166–175. [Google Scholar] [CrossRef]
- Wang, P.; Shen, C.; Cong, Q.; Xu, K.; Lu, J. Enzyme-catalyzed biodegradation of penicillin fermentation residues by β-lactamase OtLac from Ochrobactrum tritici. Microb. Cell Fact. 2021, 20, 117. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Breslawec, A.P.; Liang, T.; Deng, Z.; Kuperman, L.L.; Yu, Q. Strategy to combat biofilms: A focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023, 9, 63. [Google Scholar] [CrossRef]
- Zheng, C.C.; Gao, L.; Sun, H.; Zhao, X.Y.; Gao, Z.Q.; Liu, J.; Guo, W. Advancements in enzymatic reaction-mediated microbial transformation. Heliyon 2024, 10, 19. [Google Scholar] [CrossRef]
- He, Q.; Lin, Z.; Zhang, X.; Qin, M.; Huang, Y.; Liao, X.; Liu, Y.; Ren, H.; Sun, J. Designing a reengineered probiotic yeast to spontaneously degrade residual antibiotics in gut during antimicrobial therapy. J. Clean. Prod. 2024, 483, 144177. [Google Scholar] [CrossRef]
- Bhatia, V.; Dhir, A.; Ray, A.K. Integration of photocatalytic and biological processes for treatment of pharmaceutical effluent. J. Photochem. Photobiol. A Chem. 2018, 364, 322–327. [Google Scholar] [CrossRef]
- Katiyar, R.; Chen, C.W.; Singhania, R.R.; Tsai, M.L.; Saratale, G.D.; Pandey, A.; Dong, C.D.; Patel, A.K. Efficient remediation of antibiotic pollutants from the environment by innovative biochar: Current updates and prospects. Bioengineered 2022, 13, 14730–14748. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Murphy, C.D. Application of microbial biofilms in biocatalysis and biodegradation. In Enzymes for Pollutant Degradation; Mulla, S.I., Bharagava, R.N., Eds.; Microorganisms for Sustainability; Springer: Singapore, 2022; Volume 30, pp. 93–118. [Google Scholar] [CrossRef]
- Feng, L.; Dong, W.; Li, B.; Li, Q.; Liu, Z.; Feng, R.; Giannakis, S. Highly synergistic degradation of norfloxacin and outstanding elimination of antibiotic-resistant elements by a combined electro-Fenton/peracetic acid process under mild conditions. J. Environ. Chem. Eng. 2025, 13, 116153. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Wang, Y. Synergistic degradation of levofloxacin through dielectric barrier discharge and sodium persulfate. J. Environ. Chem. Eng. 2023, 11, 111158. [Google Scholar] [CrossRef]
- Fanfoni, E.; Bellassi, P.; Fontana, A.; Sinisgalli, E.; Rocchetti, G.; Piccinini, S.; Morelli, L.; Cappa, F. Metagenomics and untargeted metabolomics reveal antibiotic resistance dynamics in an anaerobic digestion–composting system treating organic fraction of municipal solid waste. Environ. Microbiome 2025, 20, 106. [Google Scholar] [CrossRef]
- McGarvey, K.M.; Queitsch, K.; Fields, S. Wide variation in antibiotic resistance proteins identified by functional metagenomic screening of a soil DNA library. Appl. Environ. Microbiol. 2012, 78, 1708–1714. [Google Scholar] [CrossRef]
- Olsen, N.S.; Riber, L. Metagenomics as a transformative tool for antibiotic resistance surveillance: Highlighting the impact of mobile genetic elements with a focus on the complex role of phages. Antibiotics 2025, 14, 296. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Boulund, F.; Fick, J.; Kristiansson, E.; Larsson, D.J. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 2014, 5, 648. [Google Scholar] [CrossRef]
- Gao, F.Z.; Jia, W.L.; Li, B.; Zhang, M.; He, L.Y.; Bai, H.; Liu, Y.S.; Ying, G.G. Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study. Environ. Int. 2025, 195, 109239. [Google Scholar] [CrossRef]
- Hassa, J.; Maus, I.; Off, S.; Pühler, A.; Scherer, P.; Klocke, M.; Schlüter, A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl. Microbiol. Biotechnol. 2018, 102, 5045–5063. [Google Scholar] [CrossRef]
- Jouffret, V.; Miotello, G.; Culotta, K.; Ayrault, S.; Pible, O.; Armengaud, J. Increasing the power of interpretation for soil metaproteomics data. Microbiome 2021, 9, 195. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Zhang, Z. Implementing metatranscriptomics to unveil the mechanism of bioaugmentation adopted in a continuous anaerobic process treating cow manure. Bioresour. Technol. 2021, 330, 124962. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Richnow, H.H.; Imfeld, G. Novel stable isotope concepts to track antibiotics in wetland systems. J. Environ. Sci. 2024, 146, 298–303. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, M.; Li, W.; Wu, L.; Chen, Y.; Luo, Y.; Christie, P.; Zhang, H. Simultaneous extraction of four classes of antibiotics in soil, manure and sewage sludge and analysis by liquid chromatography-tandem mass spectrometry with the isotope-labelled internal standard method. Anal. Methods 2013, 5, 3721–3731. [Google Scholar] [CrossRef]
- Qiu, M.; Hu, A.; Yu-ming, M.H.; Zhao, Y.; He, Y.; Xu, J.; Lu, Z. Elucidating degradation mechanisms of florfenicol in soil by stable-isotope assisted nontarget screening. J. Hazard. Mater. 2021, 403, 123974. [Google Scholar] [CrossRef]
- Birkigt, J.; Gilevska, T.; Ricken, B.; Richnow, H.H.; Vione, D.; Corvini, P.F.X.; Nijenhuis, I.; Cichocka, D. Carbon stable isotope fractionation of sulfamethoxazole during biodegradation by Microbacterium sp. strain BR1 and upon direct photolysis. Environ. Sci. Technol. 2015, 49, 6029–6036. [Google Scholar] [CrossRef]
- de Sousa, J.M.; Lourenço, M.; Gordo, I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 2023, 31, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Shen, Z.; Zhou, Q.; Ren, J.; Wang, H.; Zhang, D.; Pan, X. Antibiotic resistance genes in the animal manure-amended soil-plant system: Occurrence, transmission, bacterial hosts, and human health risks. Ecotoxicol. Environ. Saf. 2025, 303, 118890. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; He, M.; Zhang, J.; Liu, J.; Su, J.; Dai, J. Effects of the coexistence of antibiotics and heavy metals on the fate of antibiotic resistance genes in chicken manure and surrounding soils. Ecotoxicol. Environ. Saf. 2023, 263, 115367. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lv, K.; Deng, C.; Yu, Z.; Shi, J.; Johnson, A.C. Persistence and migration of tetracycline, sulfonamide, fluoroquinolone, and macrolide antibiotics in streams using a simulated hydrodynamic system. Environ. Pollut. 2019, 252, 1532–1538. [Google Scholar] [CrossRef]
- Cavany, S.; Nanyonga, S.; Hauk, C.; Lim, C.; Tarning, J.; Sartorius, B.; Dolecek, C.; Caillet, C.; Newton, P.N.; Cooper, B.S. The uncertain role of substandard and falsified medicines in the emergence and spread of antimicrobial resistance. Nat. Commun. 2023, 14, 6153. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F. Recent progress and challenges in microbial defluorination and degradation for sustainable remediation of fluorinated xenobiotics. Processes 2025, 13, 2017. [Google Scholar] [CrossRef]
- Khan, M.F. Recent advances in microbial enzyme applications for sustainable textile processing and waste management. Sci 2025, 7, 46. [Google Scholar] [CrossRef]
- Khan, M.F. Enhancing stability of enzymes for industrial applications: Molecular insights and emerging approaches. World J. Microbiol. Biotechnol. 2025, 41, 362. [Google Scholar] [CrossRef]
- Monali, M.; Choudharya, M.; Ray, S. A review on constructed wetlands for environmental and emerging contaminants removal from wastewater. Environ. Dev. Sustain. 2024, 26, 30181–30220. [Google Scholar]
- Zubair, M.; Arshad, M.; Ullah, A. Chitosan-based materials for water and wastewater treatment. In Handbook of Chitin and Chitosan; Gopi, S., Thomas, S., Pius, A., Eds.; Volume 3: Chitin and Chitosan based Polymer Materials for Various Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 773–809. [Google Scholar]
- Kümmerer, K.; Alexy, R.; Hüttig, J.; Schöll, A. Standardized tests fail to assess the effects of antibiotics on environmental bacteria. Water Res. 2004, 38, 2111–2116. [Google Scholar] [CrossRef]
- Rafeeq, H.; Afsheen, N.; Rafique, S.; Arshad, A.; Intisar, M.; Hussain, A.; Bilal, M.; Iqbal, H.M. Genetically engineered microorganisms for environmental remediation. Chemosphere 2023, 310, 136751. [Google Scholar] [CrossRef]
- Schmerold, I.; van Geijlswijk, I.; Gehring, R. European regulations on the use of antibiotics in veterinary medicine. Eur. J. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef]
Antibiotic | Detected Concentration (mg/kg) | Animal | Region | References |
---|---|---|---|---|
Doxycycline | 1.48 | Pig | Belgium | [24] |
Chlortetracycline | 7.92 | Pig | China | [25] |
Oxytetracycline | 4.11 | Pig | ||
Oxytetracycline + epi-oxytetracycline | 0.29 | Cattle | Poland | [20] |
1.43 | Pig | |||
Sulfamethoxazole | 10.87 | Pig | ||
Doxycycline | 4.05 | Pig | ||
Oxytetracycline | 1.60 | Cattle | Kenya | [26] |
Tetracycline | 5.48 | Cattle | ||
Sulfadiazine | 4.54 | Pig | Albania and Kosovo | [27] |
16.60 | Poultry | |||
11.10 | Cattle | |||
Sulfamethoxazole | 1.99 | Poultry | Poland | [20] |
Sulfamethoxazole | 1.25 | Cattle | Kenya | [26] |
Sulfadiazine | 0.17 | Cattle | ||
Enrofloxacin | 1.42 | Poultry | China | [28] |
Enrofloxacin | 6.68 | Poultry | Brazil | [29] |
Antibiotic Class | Structural Features | Photochemical Stability | Enzymatic Hydrolysis | Implications | Key References |
---|---|---|---|---|---|
Macrolides | 14–16-membered lactone with sugar substituents | Poor chromophores → stable under sunlight | Esterases (e.g., EstX) open the lactone ring | Chemically recalcitrant; require specialised enzymes | [30,40] |
Fluoroquinolones | Quinoline-4-one core with C3–COOH, C6–F, C7 amine | Aromatic core absorbs UV; moderate photolysis | Side chains cleaved; aromatic nucleus persists | Persistent radicals remove substituents first | [32,33] |
Aminoglycosides | Aminocyclitol + amino sugars, highly polar | No UV chromophores; degrade via NOM-mediated ROS | Glycosidases remove sugars | Stable abiotically; microbial enzymes key | [34,35] |
Tetracyclines | Fused 4-ring scaffold with multiple substituents | Conjugated system absorbs UV; radical ring cleavage | Epimerization/dehydration at C4/C6 | Moderate stability; metal chelation affects fate | [36,37] |
β-Lactams | Strained 4-member β-lactam fused to 5-/6-ring | Minimal UV absorption; little photolysis | Hydrolysed by β-lactamases or acid/base | Most labile; rapid loss of activity in the environment | [38] |
Sulphonamides | Aromatic with—SO2NH—linkage | Absorb UV; S–N bond cleavage is common | Limited microbial cleavage; acetylation possible | Moderate stability; UV/AOPs effective | [39] |
Bacterial Strains | Target Antibiotic(s) | Reported Mechanism | Optimal Conditions and Removal Rates | References |
---|---|---|---|---|
Delftia lacustris RJJ-61 | Erythromycin (macrolide) | Esterase-mediated lactone ring cleavage (EreA) | 35 °C, pH 7; 45% removal in 5 d | [65] |
Paracoccus versutus W7 | Erythromycin | Esterase hydrolysis via dual pathways | 30 °C, neutral pH; rapid in fermentation waste | [62] |
Rhodococcus gordoniae rjjtx-2 | Erythromycin | Esterases opening macrolide ring | 30 °C; effective in soil | [63] |
Streptomyces rochei DSM 41732 | Clarithromycin | P450 monooxygenation and sugar cleavage | 28 °C; 40% removal (0.1 mg/L) in 6 d | [61] |
Brevundimonas diminuta BZC3 | Gentamicin | 3′-O-acetylation (acetyltransferase) | 30 °C, pH 7; 50% removal in 7 days | [70] |
Bacillus velezensis (mangrove isolate) | Neomycin | Deglycosylation and ring cleavage (multi-step) | 30 °C, pH 7; 58% degraded in 4 d (with starch) | [69] |
Cupriavidus basilensis (wastewater isolate) | Neomycin | Oxidation and hydrolysis of aminosugar–aglycone bonds | 28–30 °C, pH 7; 50% removal in 4 d (with ammonium) | [69] |
Lysinibacillus sp. 3 + I | Oxytetracycline (tetracycline) | Initial hydroxylation and ring cleavage | 30 °C, pH 6; 85% removal in 2.7 d | [74] |
Klebsiella sp. TR5 | Tetracycline | Oxidation and hydrolysis (ring opening, deamination) | 28 °C, pH 7; 90% removal in 7 d | [78] |
Shewanella sp. TD-4 | Tetracycline | Reductive ring cleavage | 37 °C, pH 7.2; 95–98% degraded in 2 d | [78] |
Sphingobacterium sp. PM2-P1-29 | Tetracycline | Likely β-diketone hydrolase activity | 30 °C, pH 7; 50% removal in 5 d | [78] |
Sphingobacterium sp. SQW1 | Penicillin G (β-lactam) | β-lactamase and acylase (ring hydrolysis, side-chain cleavage) | 30 °C, pH 7; complete removal (100 mg/L) ≤1 h | [79] |
Pseudomonas aeruginosa W1 | Amoxicillin (β-lactam) | β-lactamase secretion | 35 °C, pH 7; >90% degraded in 3 d (with algal symbiont) | [80] |
Bacillus subtilis W1 | Amoxicillin | β-lactamase (penicillinase) | 35 °C, pH 7; >90% degraded in 3 d (with microalgae) | [80] |
Pseudomonas silesiensis F6a | Sulfamethoxazole (sulphonamide) | Sulphonamide bond hydrolysis and isoxazole ring cleavage | 30 °C, pH 7; complete degradation in 3 d | [81] |
Acinetobacter sp. WJ | Sulfamethoxazole | Multi-enzyme mineralisation with ring cleavage | 25 °C, pH 7; complete (5–240 mg/L) in 7 d | [82] |
Alcaligenes faecalis HPS | Sulfamethoxazole | Sulphonamide bond hydrolysis → 3-amino-5-methylisoxazole, oxidative deamination | 30 °C, pH 7; 40% removal in 7 d | [83] |
Aeromonas caviae GLB-10 | Sulfamethoxazole | Sulphonamide bond cleavage; acetylation and reduction | 30 °C; 250 mg/L degraded in 3 d (mixed culture) | [84] |
Vibrio diabolicus L2-2 | Sulfamethoxazole | N-acetylation and ipso-hydroxylation (Nat monooxygenase) | 25 °C, pH 7; 45% removal in 5 d | [85] |
Representative Enzymes | Main Antibiotic Targets | Mechanism/Function | References |
---|---|---|---|
Hydrolases | |||
β-lactamases | β-lactams | Hydrolyse β-lactam ring, neutralising antibiotic activity and aiding biodegradation | [107,108,109,110] |
Esterases (Ere, Est, EstX) | Macrolides, cephalosporins | Hydrolyse ester or macrolactone bonds, inactivating antibiotics in wastewater and reactors | [114,115,116,117,118] |
Amidases (AmiD, Penicillin G amidase) | Amphenicols, β-lactams | Cleave amide bonds to inactive products; used in biocatalysis and antibiotic synthesis | [119,120,121] |
Transferases | |||
Acetyltransferases (AACs, CATs) | Aminoglycosides, fluoroquinolones, chloramphenicol | Acetylate amino/hydroxyl groups, blocking ribosome binding and reducing activity | [122,123,124,125,126,127,128] |
Phosphotransferases (APHs) | Aminoglycosides | Phosphorylate hydroxyl groups via ATP, leading to antibiotic inactivation | [129,130,131] |
Nucleotidyltransferases (ANTs) | Aminoglycosides, lincosamides | Adenylylate hydroxyl or amino groups, decreasing ribosomal binding affinity | [132,133,134,135] |
Oxidoreductases/Monooxygenases | |||
Demethylases | Macrolides | Remove methyl groups, reducing activity or enabling further degradation | [136,137,138] |
Monooxygenases (Tet(X), SulX/SulR, AMO) | Tetracyclines, sulphonamides, β-lactams | Hydroxylate or oxidise antibiotics, promoting inactivation and mineralisation | [97,139,140,141,142,143] |
Cytochrome P450s | Fluorinated drugs | Catalyse oxidative degradation of persistent pharmaceutical compounds | [144,145,146,147,148] |
Laccases | |||
Trametes versicolor and bacterial laccases | Sulphonamides, macrolides, tetracyclines | Oxidatively degrade antibiotics; immobilised forms enhance stability and reduce ecotoxicity | [149,150,151,152] |
Peroxidases | |||
LiP, MnP, catalase-peroxidases | Tetracyclines | Oxidatively cleave and mineralise antibiotics under mild conditions | [153,154,155,156,157] |
Unspecific Peroxygenases (UPOs) | |||
Agrocybe aegerita UPO, Caldariomyces chloroperoxidase | Multiple antibiotic classes | Broad oxidative degradation under mild and eco-friendly conditions | [158,159] |
Category | Challenge | Implication | Research and Mitigation Needs | Key References |
---|---|---|---|---|
Antibiotic complexity | Structural diversity & mixed residues | Wide range of antibiotic structures; simultaneous residues in manure complicate universal degradation | Engineer enzymes or consortia with broad substrate specificity; assess multi-antibiotic interactions | [12] |
Degradation efficiency | Partial degradation & toxic intermediates | Enzymatic/microbial activity can produce persistent or toxic metabolites | Advanced analytics (LC-HRMS, GC × GC-MS) to track metabolites; engineer pathways for full mineralisation | [47,172] |
Limited anaerobic degradation | Many manure systems are oxygen-limited; anaerobic pathways are poorly understood | Integrate omics (metagenomics, metatranscriptomics, metaproteomics), stable isotope probing, and flux modelling to resolve anaerobic pathways | [179,184] | |
Enzyme-related barriers | Cofactor dependency & stability in complex matrices | Enzyme activity is inhibited by cofactors, pH, ammonia, humic substances, and organic load | Engineer robust, cofactor-independent or immobilised enzymes; test in field-relevant matrices | [14,15] |
Scalability | Industrial-scale production, purification, and immobilisation are costly | Develop cost-effective production and immobilisation methods; pilot-scale trials | [14] | |
Microbial constraints | Competition & selective pressure | Introduced degraders may fail due to native microbiota; residual antibiotics select for resistance | Design resilient microbial consortia; monitor ARG dynamics; consider microbial interactions | [105] |
Horizontal gene transfer (HGT) risks | ARG dissemination via plasmids, transposons, phages | Combine microbiome and mobilome studies; link degradation efficiency to ARG suppression | [5,54,167,191] | |
Process conditions | Variable manure properties & environmental factors | Heterogeneity in composition, pH, temperature, and redox affects degradation | Standardise assays; test across diverse manure types and environmental conditions | [98,99,100,101,102,103,104,105] |
Anaerobic process limitations | Many antibiotic-degrading pathways are oxygen-dependent; incomplete anaerobic degradation may lead to residual antibiotics and transformation products | Map anaerobic microbial consortia, electron transfer, and metabolic pathways; integrate anaerobic pathway engineering | [88,103,104,105] | |
Knowledge gaps | Limited pathway elucidation | Metabolic intermediates, enzymatic mechanisms, and anaerobic flows are poorly mapped | Use integrated omics, metabolomics, flux analysis; engineer targeted enzymatic pathways | [166,179] |
Lack of standardised assays | Absence of reproducible protocols; lab-to-field translation unreliable | Establish harmonised degradation and ARG assays; pilot- and farm-scale validation | [196] | |
Operational barriers | Integration & cost | Embedding solutions into current manure systems is challenging; high expenses limit adoption | Develop low-cost, field-deployable biotechnologies; integrate into existing workflows | [12] |
Translation from lab to field | Most studies remain at lab scale; lack of pilot- or field-scale validation limits practical adoption | Conduct pilot-scale trials, techno-economic analysis, and life-cycle assessment; evaluate waterborne risks of degradation products | [154,192] | |
Regulatory and safety concerns | Biosafety & ecological impacts | GM strains may pose release risks; foreign microbes/enzymes can disturb soil microbiomes | Follow biosafety guidelines; assess ecological impacts before field application | [202] |
Policy gaps | Lack of harmonised regulatory frameworks for antibiotic residue management | Support the development of national/international guidelines | [201,202] | |
Emerging mitigation strategies | Bio-based amendments and constructed wetlands | Offer low-cost, scalable, and sustainable options for antibiotic removal | Integrate CWs, chitosan flocculants, and hybrid treatments with microbial/enzymatic approaches | [192,203] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Tan, J.; Khan, M.F.; Chugh, G.; Schmidt, O.; Ma, L.; Bu, D. Emerging Microbial and Enzymatic Approaches for Sustainable Antibiotic Biodegradation in Livestock Manure to Mitigate Water Pollution Risks. Water 2025, 17, 2960. https://doi.org/10.3390/w17202960
Gao Z, Tan J, Khan MF, Chugh G, Schmidt O, Ma L, Bu D. Emerging Microbial and Enzymatic Approaches for Sustainable Antibiotic Biodegradation in Livestock Manure to Mitigate Water Pollution Risks. Water. 2025; 17(20):2960. https://doi.org/10.3390/w17202960
Chicago/Turabian StyleGao, Zimin, Jian Tan, Mohd Faheem Khan, Gaurav Chugh, Olaf Schmidt, Lu Ma, and Dengpan Bu. 2025. "Emerging Microbial and Enzymatic Approaches for Sustainable Antibiotic Biodegradation in Livestock Manure to Mitigate Water Pollution Risks" Water 17, no. 20: 2960. https://doi.org/10.3390/w17202960
APA StyleGao, Z., Tan, J., Khan, M. F., Chugh, G., Schmidt, O., Ma, L., & Bu, D. (2025). Emerging Microbial and Enzymatic Approaches for Sustainable Antibiotic Biodegradation in Livestock Manure to Mitigate Water Pollution Risks. Water, 17(20), 2960. https://doi.org/10.3390/w17202960