A Modified Fick’s First Law Incorporating a Flux Correction Factor for Nutrient Diffusion in Intertidal Sediments
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Nutrient Sampling
2.2. Modification of Fick’s First Law of Diffusion
2.3. Estimation of Activity Coefficient
2.4. Estimation of Effective Diffusion Coefficient, Porosity, and Tortuosity
2.5. Statistical Analysis
2.6. Data Analysis
3. Results
3.1. Flux Determination by Classical Version of Fick’s First Law of Nutrient Diffusion
3.2. Modified Version of Fick’s First Law and Its Flux Correction Factor
3.2.1. Flux Correction Factor
3.2.2. Modified Version of Fick’s First Law of Nutrient Flux
4. Discussion
4.1. Thermodynamic and Physicochemical Interpretation of the Activity Coefficient
4.2. Correction Factor and Flux Estimation Across Depths
4.3. Statistically Significant Differences Between the Standard and Modified Flux
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Classical Fick |
MF | Modified Fick |
FCF | Flux Correction Factor |
St | Station |
Appendix A. Introduction of Flux Correction Factor
- ▪
- , , , , and are the coefficients;
- ▪
- Z is the variable (accounting for depth in m);
- ▪
- 0, 1, 2, 3, and 4 are the degrees.
Appendix B. Statistical Test Results
Stations | Mean Flux Obtained Using Standard Method | Mean Flux Obtained Using Modified Method | Mean Difference in Flux | t-Value | Significance (p-Value < 0.05) |
---|---|---|---|---|---|
St_A | −3.63775 | −3.52471 | −0.11303 | −1.85913 | 0.13654 * |
St_B | −6.25899 | −6.28696 | 0.02796 | 0.15384 | 0.88519 * |
St_C | −6.96629 | −6.79534 | −0.17095 | −1.01444 | 0.36775 * |
St_D | −3.36033 | −3.24471 | −0.11562 | −1.85787 | 0.13674 * |
St_E | −3.74747 | −3.69467 | −0.05281 | −0.70432 | 0.52008 * |
St_F | −3.45166 | −3.36634 | −0.08532 | −1.08316 | 0.33967 * |
St_G | −3.96171 | −3.98111 | 0.01939 | 0.08736 | 0.93458 * |
St_H | −4.10228 | −3.98201 | −0.12026 | −0.62248 | 0.56735 * |
St_I | −3.15966 | −3.01441 | −0.14525 | −0.92015 | 0.40957 * |
Stations | Mean Flux Obtained Using Standard Method | Mean Flux Obtained Using Modified Method | Mean Difference in Flux | t-Value | Significance (p-Value < 0.05) |
---|---|---|---|---|---|
St_A | −0.0033 | −0.00319 | −1.10 × 10−4 | −2.12125 | 0.1012 * |
St_B | −7.57 × 10−5 | 8.71 × 10−6 | −8.44 × 10−5 | −1.66061 | 0.17213 * |
St_C | 9.91 × 10−5 | 9.34 × 10−6 | 8.97 × 10−5 | 1.18873 | 0.3003 * |
St_D | −0.00163 | −0.00161 | −1.80 × 10−5 | −0.20977 | 0.8441 * |
St_E | −0.00356 | −0.00336 | −2.03 × 10−4 | −2.87125 | 0.04541 ** |
St_F | −0.01146 | −0.01179 | 3.32 × 10−4 | 1.25809 | 0.27679 * |
St_G | −0.00965 | −0.00957 | −8.57 × 10−5 | −0.45648 | 0.67173 * |
St_H | −0.00103 | −9.49 × 10−4 | −8.57 × 10−5 | −1.02396 | 0.36374 * |
St_I | −0.00264 | −0.0026 | −3.90 × 10−5 | −0.14799 | 0.88951 * |
Stations | Mean Flux Obtained Using Standard Method | Mean Flux Obtained Using Modified Method | Mean Difference in Flux | t-value | Significance (p-value< 0.05) |
---|---|---|---|---|---|
St_A | −4.56 × 10−2 | −4.63 × 10−2 | 6.73 × 10−4 | 0.47037 | 0.66259 * |
St_B | −4.71 × 10−2 | −4.67 × 10−2 | −4.08 × 10−4 | −0.32236 | 0.76332 * |
St_C | −6.08 × 10−2 | −5.87 × 10−2 | −2.12 × 10−3 | −1.43809 | 0.22379 * |
St_D | −3.66 × 10−2 | −3.52 × 10−2 | −1.46 × 10−3 | −2.83111 | 0.04729 ** |
St_E | −2.67 × 10−2 | −2.63 × 10−2 | −3.88 × 10−4 | −0.30687 | 0.77425 * |
St_F | −2.05 × 10−2 | −1.86 × 10−2 | −1.88 × 10−3 | −2.84086 | 0.04683 ** |
St_G | −1.19 × 10−2 | −1.05 × 10−2 | −1.38 × 10−3 | −1.26816 | 0.27353 * |
St_H | 4.18 × 10−5 | 3.85 × 10−5 | 3.29 × 10−6 | 0.55703 | 0.6072 * |
St_I | 1.60 × 10−3 | 1.72 × 10−3 | −1.16 × 10−4 | −0.99619 | 0.37554 * |
References
- Butt, A.; Iram, Z.; Saleem, J.; Jabeen, A. Importance of community involvement in coastal area management: A review of International and Pakistani scenario. Int. J. Biosci. (IJB) 2018, 12, 239–247. [Google Scholar] [CrossRef]
- Rizzo, A.; Anfuso, G. Coastal dynamic and evolution: Case studies from different sites around the world. Water 2020, 12, 2829. [Google Scholar] [CrossRef]
- Wilbur, L.; Louca, V.; Ibanez-Erquiaga, B.; Küpper, F.C. A case for trans-regional intertidal research in unstudied areas in the northeast and southeast Pacific: Filling the gaps. Coasts 2024, 4, 323–346. [Google Scholar] [CrossRef]
- Murray, N.; Phinn, S.; Fuller, R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Clinton, N.; Lyons, M. High-resolution global maps of tidal flat ecosystems from 1984 to 2019. Sci. Data 2022, 9, 542. [Google Scholar] [CrossRef]
- Rios-Yunes, D.; Grandjean, T.; di Primio, A.; Tiano, J.; Bouma, T.J.; van Oevelen, D.; Soetaert, K. Sediment resuspension enhances nutrient exchange in intertidal mudflats. Front. Mar. Sci. 2023, 10, 1155386. [Google Scholar] [CrossRef]
- Sarkar, A.; Al-Said, T.; Naqvi, S.W.A.; Ahmed, A.; Fernandes, L.; Madhusoodhanan, R.; Thuslim, F.; Yamamoto, T.; Al-Yamani, F. A preliminary study on benthic nutrient exchange across sediment-water interfaces in a shallow marine protected area of the Northwestern Arabian Gulf. Mar. Environ. Res. 2024, 196, 106420. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, G.L.; Liu, S.M. Nutrient exchanges at the sediment-water interface and the responses to environmental changes in the Yellow Sea and East China Sea. Mar. Pollut. Bull. 2022, 176, 113420. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, J.J.; Liang, W.; Luo, X. Tidal pumping-induced nutrients dynamics and biogeochemical implications in an intertidal aquifer. J. Geophys. Res. Biogeosci. 2017, 122, 3322–3342. [Google Scholar] [CrossRef]
- Cooper, I.J.; Godbold, J.A.; Annett, A.L. Macrofaunal contributions to benthic nutrient fluxes revealed by radium disequilibrium. Limnol. Oceanogr. 2025, 70, 1345–1358. [Google Scholar] [CrossRef]
- Barrois, J.-M.; Mesnage, V.; Metzger, É.; Mouazé, D.; Denis, L.; Deloffre, J. Modeling of phosphate flux induced by flood resuspension on a macrotidal estuarine mudflat (Seine, France). Mar. Chem. 2024, 265, 104427. [Google Scholar] [CrossRef]
- Hong, Q.; Cheng, Y.; Qu, Y.; Wei, L.; Liu, Y.; Gao, J.; Cai, P.; Chen, T. Overlooked shelf sediment reductive sinks of dissolved rhenium and uranium in the modern ocean. Nat. Commun. 2024, 15, 3966. [Google Scholar] [CrossRef]
- Tamborski, J.J.; Eagle, M.; Kurylyk, B.L.; Kroeger, K.D.; Wang, Z.A.; Henderson, P.; Charette, M.A. Pore water exchange-driven inorganic carbon export from intertidal salt marshes. Limnol. Oceanogr. 2021, 66, 1774–1792. [Google Scholar] [CrossRef]
- Kwon, I.; Kim, T.; Park, S.Y.; Lee, C.; Lee, J.; Lee, J.; Kim, H.-G.; Kwon, B.-O.; Yoon, H.J.; Nam, J. National scale evaluation of nutrient purification capacity in marine sediments along the coast of South Korea: A mesocosm study based in situ assessment. Sci. Total Environ. 2025, 964, 178577. [Google Scholar] [CrossRef]
- Meyer, J.; Voynova, Y.G.; Van Dam, B.; Luitjens, L.; Daehne, D.; Thomas, H. Intertidal Regions Regulate Seasonal Coastal Carbonate System Dynamics in the East Frisian Wadden Sea. EGUsphere 2024, 2024, 1–40. [Google Scholar] [CrossRef]
- Fox, A.L.; Trefry, J.H. Nutrient fluxes from recent deposits of fine-grained, organic-rich sediments in a Florida estuary. Front. Mar. Sci. 2023, 10, 1305990. [Google Scholar] [CrossRef]
- Ospina-Álvarez, N.; Caetano, M.; Vale, C.; Santos-Echeandía, J.; Bernárdez, P.; Prego, R. Exchange of nutrients across the sediment–water interface in intertidal ria systems (SW Europe). J. Sea Res. 2014, 85, 349–358. [Google Scholar] [CrossRef]
- Yin, X.; Wang, W.; Zou, Y.; Song, Z.; Sardans, J.; Wiesmeier, M.; Guggenberger, G.; Li, Q.; Chen, J.; Peñuelas, J. Intertidal zonation of mangrove organic carbon fractions driven by vegetation biomass and soil nutrient levels. CATENA 2025, 250, 108722. [Google Scholar] [CrossRef]
- Rajyaguru, A.; Metzler, R.; Dror, I.; Grolimund, D.; Berkowitz, B. Diffusion in porous rock is anomalous. Environ. Sci. Technol. 2024, 58, 8946–8954. [Google Scholar] [CrossRef]
- Tartakovsky, D.M.; Dentz, M. Diffusion in porous media: Phenomena and mechanisms. Transp. Porous Media 2019, 130, 105–127. [Google Scholar] [CrossRef]
- Berkowitz, B.; Emmanuel, S.; Scher, H. Non-Fickian transport and multiple-rate mass transfer in porous media. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Fick, A.V. On liquid diffusion. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1855, 10, 30–39. [Google Scholar] [CrossRef]
- Lewis, G.N.; Randall, M. Thermodynamics and the Free Energy of Chemical Substances; McGraw-Hill: Columbus, OH, USA, 1923. [Google Scholar]
- Pitzer, K.S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268–277. [Google Scholar] [CrossRef]
- Debye, V.P. Zur theorie der electrolyte. Phyikalishce Zeitschrift. 1923, 185–206. [Google Scholar]
- Millero, F.J.; Pierrot, D. A chemical equilibrium model for natural waters. Aquat. Geochem. 1998, 4, 153–199. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Kim, J.J. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 1974, 96, 5701–5707. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Gröning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 265–291. [Google Scholar] [CrossRef]
- Millero, F. Use of models to determine ionic interactions in natural waters. Thalass. Jugosl. 1982, 18, 253–291. [Google Scholar]
- Pierrot, D.; Millero, F.J. The speciation of metals in natural waters. Aquat. Geochem. 2017, 23, 1–20. [Google Scholar] [CrossRef]
- Khoo, K.; Ramette, R.W.; Culberson, C.H.; Bates, R.G. Determination of hydrogen ion concentrations in seawater from 5 to 40. degree. C: Standard potentials at salinities from 20 to 45%. Anal. Chem. 1977, 49, 29–34. [Google Scholar] [CrossRef]
- Millero, F.J.; Schreiber, D.R. Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Am. J. Sci. 1982, 282, 1508–1540. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis; Macmillan: New York, NY, USA, 2010. [Google Scholar]
- Flower, H.; Rains, M.; Lewis, D.; Zhang, J.-Z.; Price, R. Saltwater intrusion as potential driver of phosphorus release from limestone bedrock in a coastal aquifer. Estuar. Coast. Shelf Sci. 2017, 184, 166–176. [Google Scholar] [CrossRef]
- Flores-Chaparro, C.E.; Rodriguez-Hernandez, M.C.; Chazaro-Ruiz, L.F.; Alfaro-De la Torre, M.C.; Huerta-Diaz, M.A.; Rangel-Mendez, J.R. Chitosan-macroalgae biocomposites as potential adsorbents of water-soluble hydrocarbons: Organic matter and ionic strength effects. J. Clean. Prod. 2018, 197, 633–642. [Google Scholar] [CrossRef]
- Ormeño-Martínez, M.; Guzmán, E.; Fernández-Peña, L.; Greaves, A.J.; Bureau, L.; Ortega, F.; Rubio, R.G.; Luengo, G.S. Roles of polymer concentration and ionic strength in the deposition of chitosan of fungal origin onto negatively charged surfaces. Biomimetics 2024, 9, 534. [Google Scholar] [CrossRef]
- Sheibley, R.W.; Paulson, A.J. Quantifying Benthic Nitrogen Fluxes in Puget Sound, Washington: A Review of Available Data; Scientific Investigations Report 2014-5033; U.S. Geological Survey: Reston, VA, USA, 2014.
- Tournassat, C.; Steefel, C.I.; Fox, P.M.; Tinnacher, R.M. Resolving experimental biases in the interpretation of diffusion experiments with a user-friendly numerical reactive transport approach. Sci. Rep. 2023, 13, 15029. [Google Scholar] [CrossRef]
- Du, C.; Pan, Y.a.; Tang, W.; Yue, Q.; Zhang, H. A Comparison Study of the Nutrient Fluxes in a Newly Impounded Riverine Lake (Longjing Lake): Model Calculation and Sediment Incubation. Water 2022, 14, 2015. [Google Scholar] [CrossRef]
- Lai, J.; Cheng, M.; Huang, R.; Yu, G.; Chong, Y.; Li, Y.; Zhong, Y. Mechanism of ammonium sharp increase during sediments odor control by calcium nitrate addition and an alternative control approach by subsurface injection. Environ. Res. 2020, 190, 109979. [Google Scholar] [CrossRef]
- Lavery, P.S.; Oldham, C.E.; Ghisalberti, M. The use of Fick’s First Law for predicting porewater nutrient fluxes under diffusive conditions. Hydrol. Process. 2001, 15, 2435–2451. [Google Scholar] [CrossRef]
- Moradi, N.; Klawonn, I.; Iversen, M.H.; Wenzhöfer, F.; Grossart, H.-P.; Ploug, H.; Fischer, G.; Khalili, A. A Novel Measurement-Based Model for Calculating Diffusive Fluxes Across Substrate-Water Interfaces of Marine Aggregates, Sediments and Biofilms. Front. Mar. Sci. 2021, 8, 689977. [Google Scholar] [CrossRef]
- Xia, L.; van Dael, T.; Bergen, B.; Smolders, E. Phosphorus immobilisation in sediment by using iron rich by-product as affected by water pH and sulphate concentrations. Sci. Total Environ. 2023, 864, 160820. [Google Scholar] [CrossRef] [PubMed]
- Slomp, C.P.; Mort, H.P.; Jilbert, T.; Reed, D.C.; Gustafsson, B.G.; Wolthers, M. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS ONE 2013, 8, e62386. [Google Scholar] [CrossRef]
- Lengier, M.; Szymczycha, B.; Brodecka-Goluch, A.; Kłostowska, Ż.; Kuliński, K. Benthic diffusive fluxes of organic and inorganic carbon, ammonium and phosphates from deep water sediments of the Baltic Sea. Oceanologia 2021, 63, 370–384. [Google Scholar] [CrossRef]
- Gibson, J.; Farnood, R. Some new ideas about porosity and diffusion in aquatic sediments. Next Res. 2025, 2, 100287. [Google Scholar] [CrossRef]
- Larson, J.H.; Bailey, S.W.; Maki, R.P.; Christensen, V.G.; Stelzer, E.A.; Smith, J.C.; LeDuc, J.F.; McWhorter, S. Possible influence of water level management on nutrient flux in nearshore sediments of Kabetogama Lake, Minnesota, USA. Ecosphere 2025, 16, e70176. [Google Scholar] [CrossRef]
- Cogorno, J.; Stolze, L.; Muniruzzaman, M.; Rolle, M. Dimensionality effects on multicomponent ionic transport and surface complexation in porous media. Geochim. Cosmochim. Acta 2022, 318, 230–246. [Google Scholar] [CrossRef]
- Münch, M.A.; van Kaam, R.; As, K.; Peiffer, S.; Ter Heerdt, G.; Slomp, C.P.; Behrends, T. Impact of iron addition on phosphorus dynamics in sediments of a shallow peat lake 10 years after treatment. Water Res. 2024, 248, 120844. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, L.; Rothe, M.; Braun, B.; Hupfer, M. Transformation of redox-sensitive to redox-stable iron-bound phosphorus in anoxic lake sediments under laboratory conditions. Water Res. 2021, 189, 116609. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoulkader, M.S.; Komai, K. A Modified Fick’s First Law Incorporating a Flux Correction Factor for Nutrient Diffusion in Intertidal Sediments. Water 2025, 17, 2958. https://doi.org/10.3390/w17202958
Abdoulkader MS, Komai K. A Modified Fick’s First Law Incorporating a Flux Correction Factor for Nutrient Diffusion in Intertidal Sediments. Water. 2025; 17(20):2958. https://doi.org/10.3390/w17202958
Chicago/Turabian StyleAbdoulkader, Moussa Siddo, and Katsuaki Komai. 2025. "A Modified Fick’s First Law Incorporating a Flux Correction Factor for Nutrient Diffusion in Intertidal Sediments" Water 17, no. 20: 2958. https://doi.org/10.3390/w17202958
APA StyleAbdoulkader, M. S., & Komai, K. (2025). A Modified Fick’s First Law Incorporating a Flux Correction Factor for Nutrient Diffusion in Intertidal Sediments. Water, 17(20), 2958. https://doi.org/10.3390/w17202958