A Modeling Framework to Estimate the Transport and Fate of Mercury in Nationwide Surface Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.2. Mercury Transformation Processes
2.3. Conceptual Mercury Transport and Fate Model
2.3.1. Elemental Mercury (Hg (0))
2.3.2. Inorganic Mercury (Hg (II))
2.3.3. Organic Mercury (MeHg)
2.4. Numerical Model Implementation
2.5. Impact Assesment
2.6. Validation and Sensitivity Analysis
3. Case Study
4. Results and Discussion
4.1. Mercury Distribution Across Colombia’s Rivers
4.2. Mercury Speciation and Implications for Ecosystem
4.3. Public Health and Pollution Impacts
4.4. Validation and Comparative Analysis
4.5. Sensitivity Analysis Results
5. Conclusions and Suggestions for Further Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carocci, A.; Rovito, N.; Sinicropi, M.S.; Genchi, G. Mercury Toxicity and Neurodegenerative Effects. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2014; pp. 1–18. [Google Scholar] [CrossRef]
- United Nations. Minamata Convention on Mercury. 2019. Available online: https://minamataconvention.org/en/documents/minamata-convention-mercury-text-and-annexes (accessed on 8 October 2023).
- World Health Organization. Preventing Disease through Healthy Environments: Exposure to Mercury: A Major Public Health Concern. 2021. Available online: https://who.int/publications/i/item/9789240023567 (accessed on 8 October 2023).
- Bernhoft, R.A. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health 2012, 2012, 460508. [Google Scholar] [CrossRef]
- Streets, D.G.; Horowitz, H.M.; Jacob, D.J.; Lu, Z.; Levin, L.; ter Schure, A.F.H.; Sunderland, E.M. Total Mercury Released to the Environment by Human Activities. Environ. Sci. Technol. 2017, 51, 5969–5977. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Gustin, M.S.; Bank, M.S.; Bishop, K.; Bowman, K.; Branfireun, B.; Chételat, J.; Eckley, C.S.; Hammerschmidt, C.R.; Lamborg, C.; Lyman, S.; et al. Mercury Biogeochemical Cycling: A Synthesis of Recent Scientific Advances. Sci. Total Environ. 2020, 737, 139619. [Google Scholar] [CrossRef]
- UN Environment Programme. Minamata Convention in 2022: Progress Report on Activities; UN Environment Programme: Geneva, Switzerland, 2023. [Google Scholar]
- UN Environment Programme. National Action Plans; UN Environment Programme: Geneva, Switzerland, 2023. [Google Scholar]
- Moreno-Brush, M.; McLagan, D.S.; Biester, H. Fate of Mercury from Artisanal and Small-Scale Gold Mining in Tropical Rivers: Hydrological and Biogeochemical Controls. A Critical Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 437–475. [Google Scholar] [CrossRef]
- Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.; Roeser, M. Mercury Contamination from Artisanal Gold Mining in Antioquia, Colombia: The World’s Highest per Capita Mercury Pollution. Sci. Total Environ. 2011, 410–411, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Diaz Arriaga, F.A. Mercurio En La Minería Del Oro: Impacto En Las Fuentes Hídricas Destinadas Para Consumo Humano. Rev. Salud Pública 2015, 16, 947–957. [Google Scholar] [CrossRef]
- Ministerio de Minas y Energía; Universidad de Córdoba. Estudio de La Cadena de Mercurio En Colombia Con Énfasis En La Actividad Minera de Oro; Ministerio de Minas y Energía y Unidad de Planeación Minero-Energética: Bogotá, Colombia, 2014. Available online: https://rds.org.co/apc-aa-files/ba03645a7c069b5ed406f13122a61c07/cadena_mercurio_tomo_i.pdf (accessed on 1 January 2025).
- Diaz, F.A.; Katz, L.E.; Lawler, D.F. Mercury Pollution in Colombia: Challenges to Reduce the Use of Mercury in Artisanal and Small-Scale Gold Mining in the Light of the Minamata Convention. Water Int. 2020, 45, 730–745. [Google Scholar] [CrossRef]
- Camacho, L.A. The Paradox of the Availability of Poor Water Quality in the Colombian Rural Sector. Rev. Ing. 2020, 49, 38–50. [Google Scholar]
- European Parliament and of the Council. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and of the Council. 2008. Available online: http://data.europa.eu/eli/dir/2008/105/2013-09-13 (accessed on 9 April 2024).
- Ministerio de Ambiente y Desarrollo Sostenible. Decreto 1076 de 2015. Colombia, 2015. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153 (accessed on 23 June 2024).
- Resolución de Colombia. Ministerio de Ambiente Vivienda y Desarrollo Territorial; Ministerio de Protección Social. 2007. Available online: https://minvivienda.gov.co/sites/default/files/normativa/2115%20-%202007.pdf (accessed on 25 April 2024).
- World Health Organization. Mercury in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Averaged, Hydrodynamic and Water Quality Model, Version 3.5. 2006. Available online: https://pdxscholar.library.pdx.edu/cengin_fac/130/ (accessed on 1 January 2025).
- Jones, E.R.; Bierkens, M.F.P.; Wanders, N.; Sutanudjaja, E.H.; van Beek, L.P.H.; van Vliet, M.T.H. DynQual v1.0: A High-Resolution Global Surface Water Quality Model. Geosci. Model Dev. 2023, 16, 4481–4500. [Google Scholar] [CrossRef]
- Danish Hydraulic Institute. MIKE 11 A Modelling System for Rivers and Channels User Guide; Danish Hydraulic Institute: Hørsholm, Denmark, 2021. [Google Scholar]
- Wool, T.; Ambrose, R.B.; Martin, J.L.; Comer, A. WASP 8: The next Generation in the 50-Year Evolution of USEPA’s Water Quality Model. Water 2020, 12, 1398. [Google Scholar] [CrossRef] [PubMed]
- Malek-Mohammadi, S.; Tachiev, G.; Cabrejo, E.; Lawrence, A. Simulation of Flow and Mercury Transport in Upper East Fork Poplar Creek, Oak Ridge, Tennessee. Remediation 2012, 22, 119–131. [Google Scholar] [CrossRef]
- Yao, H.; Zhuang, W.; Qian, Y.; Xia, B.; Yang, Y.; Qian, X. Estimating and Predicting Metal Concentration Using Online Turbidity Values and Water Quality Models in Two Rivers of the Taihu Basin, Eastern China. PLoS ONE 2016, 11, e0152491. [Google Scholar] [CrossRef] [PubMed]
- Žagar, D.; Petkovšek, G.; Rajar, R.; Sirnik, N.; Horvat, M.; Voudouri, A.; Kallos, G.; Četina, M. Modelling of Mercury Transport and Transformations in the Water Compartment of the Mediterranean Sea. Mar. Chem. 2007, 107, 64–88. [Google Scholar] [CrossRef]
- Jiménez, M.A.; Wohl, E. Solute Transport Modeling Using Morphological Parameters of Step-Pool Reaches. Water Resour. Res. 2013, 49, 1345–1359. [Google Scholar] [CrossRef]
- Jiménez, M.A.; Vélez, J.I.; Camacho, L.A. Stream Morphology and Downstream Hydraulic Geometry Relations for Bankfull Width, Universidad Nacional de Colombia; Universidad de los Andes: Bogotá, Colmbia, 2015. [Google Scholar]
- Álvarez-Villa, O.D.; Vélez, J.I.; Poveda, G. Improved Long-Term Mean Annual Rainfall Fields for Colombia. Int. J. Climatol. 2011, 31, 2194–2212. [Google Scholar] [CrossRef]
- Álvarez, O.D.; Vélez, J.I.; Poveda, G. Incertidumbre Asociada Con El Balance Hídrico de Largo Plazo. In XXIII Congreso Latinoamericano de Hidráulica; International Association for Hydro-Environmental Engineering and Research (IAHR): Cartagena de Indias, CO, USA, 2008. [Google Scholar]
- Gustafsson, J.P. Visual MINTEQ, ver. 3.1. Available online: https://vminteq.com/ (accessed on 24 October 2023).
- United States Environmental Protection Agency. WASP Mercury Processes. Hydrologic Modelling Community of Practice. Available online: https://www.epa.gov/hydrowq/wasp7-course#toxicants (accessed on 22 May 2024).
- Beer, T.; Young, P.C. Longitudinal Dispersion in Natural Streams. J. Environ. Eng. 1983, 109, 1049–1067. [Google Scholar] [CrossRef]
- Young, P.C.; Wallis, S.G. Solute Transport and Dispersion in Channels. In Channel Network Hydrology; Beven, K.J., Kirkby, M.J., Eds.; Wiley: Mason, MI, USA, 1993; pp. 129–174. [Google Scholar]
- Young, P.; Wallis, S. The Aggregated Dead Zone (ADZ) Model for Dispersion in Rivers. In Proceedings of the International Conference on Water Quality Modelling in the Inland Natural Environment, Bournemouth, UK, 10–13 June 1986; pp. 421–433. [Google Scholar]
- Lees, M.J.; Camacho, L.; Whitehead, P. Extension of the QUASAR River Water Quality Model to Incorporate Dead-Zone Mixing. Hydrol. Earth Syst. Sci. 1998, 2, 353–365. [Google Scholar] [CrossRef]
- Lees, M.J.; Camacho, L.A.; Chapra, S. On the Relationship of Transient Storage and Aggregated Dead Zone Models of Longitudinal Solute Transport in Streams. Water Resour. Res. 2000, 36, 213–224. [Google Scholar] [CrossRef]
- Santos, T.F.; Camacho, L.A. An Integrated Water Quality Model to Support Multiscale Decisions in a Highly Altered Catchment. Water 2022, 14, 374. [Google Scholar] [CrossRef]
- Camacho, L.A.; Lees, M.J. Multilinear Discrete Lag-Cascade Model for Channel Routing. J. Hydrol. 1999, 226, 30–47. [Google Scholar] [CrossRef]
- González-Pinzón, R. Determinación Del Comportamiento de La Fracción Dispersiva En Ríos Característicos de Montaña. Master’s Dissertation, Universidad Nacional de Colombia, Bogotá, CO, USA, 2008. [Google Scholar]
- Camacho, L.A.; González, R.A. Calibration and Predictive Ability Analysis of Longitudinal Solute Transport Models in Mountain Streams. Environ. Fluid Mech. 2008, 8, 597–604. [Google Scholar] [CrossRef]
- Wallis, S.G.; Young, P.C.; Beven, K.J. Experimental Investigation of the Aggregated Dead Zone Model. Proc. Inst. Civ. Eng. 1989, 87, 1–22. [Google Scholar] [CrossRef]
- Flores, A.N.; Bledsoe, B.P.; Cuhaciyan, C.O.; Wohl, E.E. Channel-reach Morphology Dependence on Energy, Scale, and Hydroclimatic Processes with Implications for Prediction Using Geospatial Data. Water Resour Res 2006, 42, W06412. [Google Scholar] [CrossRef]
- Correa-Caselles, D.F. Metodología Para La Estimación Del Destino y Transporte de Mercurio Presente En Los Ríos de Colombia. 2022. Available online: http://hdl.handle.net/1992/54564 (accessed on 27 May 2024).
- Lehner, B. Global River Network Delineation Derived from HydroSHEDS Data at 15 Arc-Second Resolution; 2019. Available online: https://hydrosheds.org/images/inpages/HydroRIVERS_TechDoc_v10.pdf (accessed on 1 January 2025).
- Díaz-Granados, M.; Barrera, S.; Ramos, J.P.; Camacho, L.A.; Rosales, R.; Escalante, N.; Torres, M. Metodología Multicriterio Para La Priorización de Inversión En Aguas Residuales Municipales En Colombia. In XX Congreso Latinoamericano de Hidráulica; IARH: La Habana, Cuba, 2002. [Google Scholar]
- Fernandez, N.; Camacho, L.A. Water Quality Modeling in Headwater Catchments: Comprehensive Data Assessment, Model Development and Simulation of Scenarios. Water 2023, 15, 868. [Google Scholar] [CrossRef]
- Chapra, S.C.; Boehlert, B.; Fant, C.; Bierman, V.J.; Henderson, J.; Mills, D.; Mas, D.M.L.; Rennels, L.; Jantarasami, L.; Martinich, J.; et al. Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment. Environ. Sci. Technol. 2017, 51, 8933–8943. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.; Usher, W. SALib: An Open-Source Python Library for Sensitivity Analysis. J. Open Source Softw. 2017, 2, 97. [Google Scholar] [CrossRef]
- Iwanaga, T.; Usher, W.; Herman, J. Toward SALib 2.0: Advancing the Accessibility and Interpretability of Global Sensitivity Analyses. SESMO 2022, 4, 18155. [Google Scholar] [CrossRef]
- Gerson, J.; Wadle, A.; Parham, J. Gold Rush, Mercury Legacy: Small-Scale Mining for Gold Has Produced Long-Lasting Toxic Pollution, from 1860s California to Modern Peru. The Conversation, 28 May 2020. Available online: https://theconversation.com/gold-rush-mercury-legacy-small-scale-mining-for-gold-has-produced-long-lasting-toxic-pollution-from-1860s-california-to-modern-peru-133324 (accessed on 24 October 2023).
- Rojas-Aguirre, A.; Camacho, L. Aplicación de Factores de Asimilación Para La Priorización de La Inversión En Sistemas de Saneamiento Hídrico En Colombia; Universidad Nacional de Colombia: Bogotá, Colombia, 2011. [Google Scholar]
- Barrera, S.; Díaz-Granados, M.; Ramos, J.P.; Camacho, L.A.; Rosales, R.; Escalante, N.; Torre, M. Modelo Computacional Del Impacto de Las Aguas Residuales Municipales Sobre La Red Hídrica. In XX Congreso Latinoamericano de Hidráulica; International Association for Hydro-Environmental Engineering and Research (IAHR): Punta del Este, Uruguay, 2002. [Google Scholar]
- Navas, A. Factores de Asimilación de Carga Contaminante En Ríos: Una Herramienta Para La Identificación de Estrategias de Saneamiento Hídrico En Países En Desarrollo; Universidad de Los Andes: Bogotá, Colombia, 2016. [Google Scholar]
- Raciny-Alemán, I. Investigación y Extensión Del Modelo Computacional Del Impacto De Las Aguas Residuales Municipales Sobre La Red Hídrica Colombiana, 2003, Volume 18. Available online: http://hdl.handle.net/1992/10062 (accessed on 3 July 2024).
- Camacho, L.A.; Lees, M.J. Modelación Del Transporte de Solutos En Ríos Bajo Condiciones de Flujo No Permanente: Un Modelo Conceptual Integrado. In XIX Congreso Latinoamericano de Hidráulica; IAHR: Córdoba, Argentina, 2000. [Google Scholar]
- Cheng, Y.; Watari, T.; Seccatore, J.; Nakajima, K.; Nansai, K.; Takaoka, M. A Review of Gold Production, Mercury Consumption, and Emission in Artisanal and Small-Scale Gold Mining (ASGM). Resour. Policy 2023, 81, 103370. [Google Scholar] [CrossRef]
- Veiga, M. Antioquia, Colombia, the World’s Most Polluted Place by Mercury, Impressions from Two Field Trips; Normal Keevil Institute of Mining Engineering, University of British Columbia: Vancouver, BC, Canada, 2010; Prepared for UNIDO (United Nations Industrial Development Organization). [Google Scholar]
- Unidad de Planeación Minero Energética (UPME). Sistema de Información Minero Colombiano (SIMCO)—Oro. Producción de Oro. Available online: https://www1.upme.gov.co/simco/Cifras-Sectoriales/Paginas/oro.aspx (accessed on 1 November 2023).
- Ramos, C.; Estévez, S.; Giraldo, E. Nivel de Contaminación Por Metilmercurio En La Región de La Mojana; Universidad de los Andes: Bogotá, Colombia, 2000; Available online: https://www.hruschka.com/hg-net/members/claudia/metilmercurio_en_la_mojana.doc (accessed on 1 January 2025).
- Gaviria, S.; Angel-Amaya, J. Geoindicadores Aplicados al Estudio de Los Efectos Ambientales de La Explotación de Oro Aluvial En La Cuenca Baja Del Río Quito, Chocó (Colombia). Gestión Ambiente 2019, 22, 235–256. [Google Scholar] [CrossRef]
- Rodríguez, L. Caracterización de la Concentración de Metales en Agua, Sedimentos y Suelos a lo Largo del Río Quito (Chocó), Zona de Explotación de oro Aluvial. Available online: http://hdl.handle.net/1992/44787 (accessed on 1 January 2025).
- Ángel-Amaya, J.; Ordoñez, M.; Olivero, J.; Echavarría, C.; Ayala, H.; Cabrera, M. Consideraciones Sobre La Minería En El Departamento Del Chocó y Recomendaciones Para Mejorar La Gestión; Geopatrimonio—Universidad de Cartagena—IIAP—WWF: Cali, CO, USA, 2019. [Google Scholar]
- Palacios-Torres, Y.; Caballero-Gallardo, K.; Olivero-Verbel, J. Mercury Pollution by Gold Mining in a Global Biodiversity Hotspot, the Choco Biogeographic Region, Colombia. Chemosphere 2018, 193, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Suemasu, K.; Veiga, M.M. Estimation of Mercury Losses and Gold Production by Artisanal and Small-Scale Gold Mining (ASGM). J. Sustain. Metall. 2021, 7, 1045–1059. [Google Scholar] [CrossRef]
- Procuraduría General de la Nación. Informe Nacional: Minería Ilegal y Contaminación por Mercurio en Colombia; Procuraduría General de la Nación: Bogotá, Colombia, 2024; Available online: https://foronacionalambiental.org.co/wp-content/uploads/2024/12/Informe-Nacional-Mineria-Ilegal-y-Contaminacion-por-Mercurio-en-Colombia-2.pdf (accessed on 1 January 2025).
- Pfeiffer, W.C.; Drude de Lacerda, L.; Malm, O.; Souza, C.M.M.; da Silveira, E.G.; Bastos, W.R. Mercury Concentrations in Inland Waters of Gold-Mining Areas in Rondônia, Brazil. Sci. Total Environ. 1989, 87–88, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Palheta, D.; Taylor, A. Mercury in Environmental and Biological Samples from a Gold Mining Area in the Amazon Region of Brazil. Sci. Total Environ. 1995, 168, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.J. Assessing Releases of Mercury from Small-Scale Gold Mining Sites in Ghana. Extr. Ind. Soc. 2017, 4, 497–505. [Google Scholar] [CrossRef]
- Swenson, J.J.; Carter, C.E.; Domec, J.-C.; Delgado, C.I. Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports. PLoS ONE 2011, 6, e18875. [Google Scholar] [CrossRef]
- Yu, C.; Liu, M.; Guo, J.; Lin, H.; Yan, Y.; Zhang, Q.; Cheng, M.; Lu, Y.; Sun, X.; Wang, X.; et al. Transport of Mercury in a Regulated High-Sediment River and Its Input to Marginal Seas. Water Res. 2022, 214, 118211. [Google Scholar] [CrossRef]
- Gerson, J.R.; Topp, S.N.; Vega, C.M.; Gardner, J.R.; Yang, X.; Fernandez, L.E.; Bernhardt, E.S.; Pavelsky, T.M. Artificial Lake Expansion Amplifies Mercury Pollution from Gold Mining. Sci. Adv. 2020, 6, eabd4953. [Google Scholar] [CrossRef]
- Ministerio de Minas y Energía; Agencia Nacional de Minería. Plan de Acción Nacional Sobre Mercurio en la Minería Artesanal y de Pequeña Escala en Colombia; Ministerio de Minas y Energía: Bogotá, Colombia, 2023. Available online: https://faolex.fao.org/docs/pdf/col227994.pdf (accessed on 1 January 2025).
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 1991; Volume 4. [Google Scholar]
- Aboulfotoh, A.; Heikal, G. Estimation of Per Capita Loading and Treated Wastewater Quality Index in Sharkia Governorate, Egypt. J. Ecol. Eng. 2022, 23, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Tosic, M.; Restrepo, J.D.; Izquierdo, A.; Lonin, S.; Martins, F.; Escobar, R. An Integrated Approach for the Assessment of Land-Based Pollution Loads in the Coastal Zone. Estuar. Coast Shelf Sci. 2018, 211, 217–226. [Google Scholar] [CrossRef]
- Elango, D.; Pulikesi, M.; Baskaralingam, P.; Ramamurthi, V.; Sivanesan, S. Production of Biogas from Municipal Solid Waste with Domestic Sewage. J. Hazard Mater 2007, 141, 301–304. [Google Scholar] [CrossRef]
- Katukiza, A.Y.; Ronteltap, M.; Niwagaba, C.B.; Kansiime, F.; Lens, P.N.L. Grey Water Characterization and Pollutant Loads in an Urban Slum. Int. J. Environ. Sci. Technol. 2015, 12, 423–436. [Google Scholar] [CrossRef]
- Chapra, S. Surface Water-quality Modeling. In McGraw-Hill Series in Water Resources and Environmental Engineering; McGraw-Hill: New York, NY, USA, 1997; Available online: https://books.google.com.co/books?id=HHWNQgAACAAJ (accessed on 1 January 2025).
- Finkelman, R. Sources and Health Effects of Metals and Trace Elements in Our Environment: An Overview. In Metal Contaminants in New Zealand; Moore, T., Black, A., Centeno, J., Harding, J., Trumm, D., Eds.; Resolution Press: Chicago, IL, USA, 2005; pp. 25–49. [Google Scholar]
- Gavis, J.; Ferguson, J.F. The Cycling of Mercury through the Environment. Water Res. 1972, 6, 989–1008. [Google Scholar] [CrossRef]
- Nabelkova, J.; Kominkova, D. Trace Metals in the Bed Sediment of Small Urban Streams. Open Environ. Biol. Monit. J. 2012, 5, 48–55. [Google Scholar] [CrossRef]
- Allison, J.; Allison, T. Partition Coefficients for Metals in Surface Water, Soil, and Waste. 2005. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P1000GHE.PDF?Dockey=P1000GHE.PDF (accessed on 24 October 2023).
- Knightes, C.D. Modeling Mercury Transport and Transformation along the Sudbury River, Massachusetts (USA) with Implications for Regulatory Actions. 2009. Available online: https://semspub.epa.gov/work/01/471164.pdf (accessed on 24 October 2023).
- Fang, T.-H.; Lien, C.-Y. Different Mercury Species Partitioning and Distribution in the Water and Sediment of a Eutrophic Estuary in Northern Taiwan. Water 2021, 13, 2471. [Google Scholar] [CrossRef]
- Chapra, S.C.; Pelletier, G. A Modeling Framework for Simulating River and Stream Water Quality. Documentation and Users Manual. 2003. Available online: https://www.scribd.com/document/389982473/Q2KDocumentation-1-pdf (accessed on 24 October 2023).
- Chapra, S.; Pelletier, G. Qual2k Documentation and User’s Manual; Civil and Environmental Engineering Dept., Tufts University: Medford, OR, USA, 2003. [Google Scholar]
- Camacho, L.A. (Universidad de Los Andes, Bogota, Colombia). Personal Communication, 2022.
- Sobol, I.M. Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates. Math Comput Simul 2001, 55, 271–280. [Google Scholar] [CrossRef]
Process | Species Involve | Interface | Parameter | Association 1 | Parameter Value |
---|---|---|---|---|---|
Volatilization | Hg (0) | Water/Air | Volatilization Velocity | - | 10 (m/d) |
Oxidation | Hg (0) and Hg (II) | Water | Oxidation Rate | pH Model | 0.01 (d−1) |
Reduction | Hg (0) and Hg (II) | Water | Reduction Rate | pH Model | 0.01 (d−1) |
Methylation | Hgdissolved (II) and MeHg | Water | Dissolved Methylation Rate | Sorption | 0.001 (d−1) |
Hgparticulate (II) and MeHg | Water | Particulate Methylation Rate | Sorption | 0.01 (d−1) | |
Sorption | Hg (II) and Hgparticulate (II) | Water | Partition Coefficient 2 | TSS Conc. POM Conc. | 5 4 |
MeHg and MeHgparticul (II) | Water | Partition Coefficient 2 | ISS Conc. POM Conc. | 5 5 | |
Settling | Total Suspended Solids (TSS) | Water/ Sediment | TSS Settling Velocity) | - | 0.8 (m/d) |
Particulate Organic Matter | Water/ Sediment | POM Settling Velocity ) | - | 0.4 (m/d) | |
Uptake | MeHg | Water/Trophic chain | Uptake Rate | - | 0.01 (d−1) |
Transport | All | Water | Hydraulics | Transport Model | - |
ID | Reference Point | Latitude | Longitude | Measured THg (µg/L) | Simulated THg (µg/L) |
---|---|---|---|---|---|
E7 | Paimadó | 5.5 | −76.735 | 0.998 | 1.392 |
E5 | Villa Conoto | 5.52 | −76.755 | 1.638 | 1.355 |
E3 | San Isidro | 5.629 | −76.739 | 1.988 | 1.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Caselles, D.; Camacho, L.A.; Fernandez, N. A Modeling Framework to Estimate the Transport and Fate of Mercury in Nationwide Surface Waters. Water 2025, 17, 250. https://doi.org/10.3390/w17020250
Correa-Caselles D, Camacho LA, Fernandez N. A Modeling Framework to Estimate the Transport and Fate of Mercury in Nationwide Surface Waters. Water. 2025; 17(2):250. https://doi.org/10.3390/w17020250
Chicago/Turabian StyleCorrea-Caselles, Daniela, Luis A. Camacho, and Nicolas Fernandez. 2025. "A Modeling Framework to Estimate the Transport and Fate of Mercury in Nationwide Surface Waters" Water 17, no. 2: 250. https://doi.org/10.3390/w17020250
APA StyleCorrea-Caselles, D., Camacho, L. A., & Fernandez, N. (2025). A Modeling Framework to Estimate the Transport and Fate of Mercury in Nationwide Surface Waters. Water, 17(2), 250. https://doi.org/10.3390/w17020250