Source Identification and Control of Eutrophication in Large Shallow Freshwater Lakes: A Case Study of Lake Taihu
Abstract
1. Introduction
2. Characteristics of Eutrophication in Lake Taihu
2.1. Characteristics of Nutrients
2.2. Temporal Heterogeneity
2.2.1. Historical Variation
2.2.2. Seasonal Variation
2.3. Spatial Heterogeneity
3. Source Identification of Eutrophication in Lake Taihu
3.1. Identification of External Pollution Using Multiple Analyses
3.1.1. Multivariate Statistical Analysis
3.1.2. Physical Model Analysis
3.1.3. Empirical Model Analysis
3.1.4. Multidisciplinary Analysis
3.2. Identification of Endogenous Pollution
3.2.1. Nutrient Suspension Flux
3.2.2. Relation to Sedimentary Organic Matter
4. Source Control of Eutrophication in Lake Taihu
4.1. Control of Non-Point-Source Pollution
4.2. Control of Point-Source Pollution
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayele, H.S.; Atlabachew, M. Review of characterization, factors, impacts, and solutions of Lake eutrophication: Lesson for lake Tana, Ethiopia. Environ. Sci. Pollut. Res. 2021, 28, 14233–14252. [Google Scholar] [CrossRef]
- Vieira, J.M.d.S.; Azevedo, M.T.d.P.; Azevedo, S.M.F.d.O.; Honda, R.Y.; Corrêa, B. Toxic cyanobacteria and microcystin concentrations in a public water supply reservoir in the Brazilian Amazonia region. Toxicon 2005, 45, 901–909. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhou, Y.; Liu, X.; Zhu, G.; Qin, B.; Gao, G. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 2017, 7, 40326. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Strokal, M.; Burek, P.; Kroeze, C.; Ma, L.; Janssen, A.B.G. Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction. Sci. Total Environ. 2019, 664, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Ocean. 2010, 115, C04002. [Google Scholar] [CrossRef]
- Vinçon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Xu, H.; Hall, N.S.; Zhu, G.; Qin, B.; Wu, Y.; Rossignol, K.L.; Dong, L.; McCarthy, M.J.; Joyner, A.R. Controlling Cyanobacterial Blooms in Hypertrophic Lake Taihu, China: Will Nitrogen Reductions Cause Replacement of Non-N2 Fixing by N2 Fixing Taxa? PLoS ONE 2014, 9, e113123. [Google Scholar] [CrossRef]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef]
- Chen, J.; Gao, X.; Xu, X.; Zhu, C.; She, X.; Kong, D.; Xue, K.; Li, Y. Algal Blooms in Lake Taihu: Earlier Onset and Extended Duration. Harmful Algae 2025, 102917. [Google Scholar] [CrossRef]
- Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272. [Google Scholar] [CrossRef]
- Giani, A.; Bird, D.F.; Prairie, Y.T.; Lawrence, J.F. Empirical study of cyanobacterial toxicity along a trophic gradient of lakes. Can. J. Fish. Aquat. Sci. 2005, 62, 2100–2109. [Google Scholar] [CrossRef]
- Gregersen, R.; Pearman, J.K.; Atalah, J.; Waters, S.; Vandergoes, M.J.; Howarth, J.D.; Thomson-Laing, G.; Thompson, L.; Wood, S.A. A taxonomy-free diatom eDNA-based technique for assessing lake trophic level using lake sediments. J. Environ. Manag. 2023, 345, 118885. [Google Scholar] [CrossRef]
- Mohamed, M.N.; Wellen, C.; Parsons, C.T.; Taylor, W.D.; Arhonditsis, G.; Chomicki, K.M.; Boyd, D.; Weidman, P.; Mundle, S.O.C.; Cappellen, P.V.; et al. Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities. Freshw. Sci. 2019, 38, 675–691. [Google Scholar] [CrossRef]
- Qin, B.; Paerl, H.W.; Brookes, J.D.; Liu, J.; Jeppesen, E.; Zhu, G.; Zhang, Y.; Xu, H.; Shi, K.; Deng, J. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Sci. Bull. 2019, 64, 354–356. [Google Scholar] [CrossRef]
- Taranu, Z.E.; Gregory-Eaves, I.; Leavitt, P.R.; Bunting, L.; Buchaca, T.; Catalan, J.; Domaizon, I.; Guilizzoni, P.; Lami, A.; McGowan, S.; et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 2015, 18, 375–384. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, Y.; Zhu, G.; Gao, G. Eutrophication control of large shallow lakes in China. Sci. Total Environ. 2023, 881, 163494. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, X.; Qin, B. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective. Environ. Sci. Pollut. Res. 2016, 23, 12811–12821. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jia, Y.; Li, E.; Zhao, S.; Zhou, Q.; Liu, L.; Song, L. Soil-Based Treatments of Mechanically Collected Cyanobacterial Blooms from Lake Taihu: Efficiencies and Potential Risks. Environ. Sci. Technol. 2012, 46, 13370–13376. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Xu, X.; Kong, F.; Zhang, S.; Kong, W.; Hao, J.; Shang, L. Two-Decade Reconstruction of Algal Blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef]
- Yang, S.-Q.; Liu, P.-W. Strategy of water pollution prevention in Taihu Lake and its effects analysis. J. Great Lakes Res. 2010, 36, 150–158. [Google Scholar] [CrossRef]
- Qin, B. Shallow lake limnology and control of eutrophication in Lake Taihu. J. Lake Sci. 2020, 32, 1229–1243. (In Chinese) [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Chen, Q.; Li, Y.; Chen, J.; Gao, Y.; Lin, P. Spatio-temporal dynamics of water quality and eutrophication in Lake Taihu, China. Ecohydrology 2021, 14, e2291. [Google Scholar] [CrossRef]
- Sun, X.; Xiong, S.; Zhu, X.; Zhu, X.; Li, Y.; Li, B.L. A new indices system for evaluating ecological-economic-social performances of wetland restorations and its application to Taihu Lake Basin, China. Ecol. Model. 2015, 295, 216–226. [Google Scholar] [CrossRef]
- Chen, X.; Liuyan, Y.; Lin, X.; Aijun, M.; Xi, B. Nitrogen removal by denitrification during cyanobacterial bloom in Lake Taihu. J. Freshw. Ecol. 2012, 27, 243–258. [Google Scholar] [CrossRef]
- Townsend-Small, A.; McCarthy, M.J.; Brandes, J.A.; Yang, L.; Zhang, L.; Gardner, W.S. Stable isotopic composition of nitrate in Lake Taihu, China, and major inflow rivers. In Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China; Qin, B., Liu, Z., Havens, K., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 135–140. [Google Scholar]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Wu, N.; Dong, F.; Shi, W. How successful are the restoration efforts of China’s lakes and reservoirs? Environ. Int. 2019, 123, 96–103. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Wu, W.; Zhang, L.; Zhu, H.; Naren, T. Mapping Taihu Basin research: A bibliometric analysis. Environ. Rev. 2021, 29, 391–400. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, B.; Zhu, G.; Shi, K.; Zhou, Y. Profound Changes in the Physical Environment of Lake Taihu From 25 Years of Long-Term Observations: Implications for Algal Bloom Outbreaks and Aquatic Macrophyte Loss. Water Resour. Res. 2018, 54, 4319–4331. [Google Scholar] [CrossRef]
- Lü, W.-W.; Yao, X.; Zhang, B.-H.; Gao, G.; Shao, K.-Q. Temporal-spatial distribution of nitrogen and phosphorus nutrients in Lake Taihu based on geostatistical analysis. Huan Jing Ke Xue Huanjing Kexue 2019, 40, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Hall, N.S.; Calandrino, E.S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011, 409, 1739–1745. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, H.; Ma, X.; Zhang, Y. Long-Term Spatiotemporal Variation and Environmental Driving Forces Analyses of Algal Blooms in Taihu Lake Based on Multi-Source Satellite and Land Observations. Water 2020, 12, 1035. [Google Scholar] [CrossRef]
- Lin, Y.; He, Z.; Yang, Y.; Stoffella, P.J.; Phlips, E.J.; Powell, C.A. Nitrogen versus phosphorus limitation of phytoplankton growth in Ten Mile Creek, Florida, USA. Hydrobiologia 2008, 605, 247–258. [Google Scholar] [CrossRef]
- Su, X.; Steinman, A.D.; Oudsema, M.; Hassett, M.; Xie, L. The influence of nutrients limitation on phytoplankton growth and microcystins production in Spring Lake, USA. Chemosphere 2019, 234, 34–42. [Google Scholar] [CrossRef]
- Su, Y.; Gan, L.; Li, Y.; Fan, Z.; Xie, C.; Liu, Y.; Liao, Y.; Ding, R.; Liu, G.; Wu, J.; et al. A novel indicator for defining plain urban river network cyanobacterial blooms: Resource use efficiency. Heliyon 2022, 8, e10601. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, G.; Li, W.; Zhang, Y.; Zhao, L.; Gu, Z. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environ. Pollut. 2013, 173, 216–223. [Google Scholar] [CrossRef]
- de Andrade, M.C.; Ugaya, C.M.L.; de Almeida Neto, J.A.; Rodrigues, L.B. Regionalized phosphorus fate factors for freshwater eutrophication in Bahia, Brazil: An analysis of spatial and temporal variability. Int. J. Life Cycle Assess. 2021, 26, 879–898. [Google Scholar] [CrossRef]
- Kocsis, M.; Gábor, S.; Piroska, K.; Gábor, K.; János, T.; Tamás, K.; Péter, T.; Krisztián, H.; Piroska, P.; Péter, S.; et al. Soluble phosphorus content of Lake Balaton sediments. J. Maps 2022, 18, 142–150. [Google Scholar] [CrossRef]
- Li, N.; Li, J.; Li, G.; Li, Y.; Xi, B.; Wu, Y.; Li, C.; Li, W.; Zhang, L. The eutrophication and its regional heterogeneity in typical lakes of China. Acta Hydrobiol. Sin. 2018, 42, 854–864. (In Chinese) [Google Scholar] [CrossRef]
- Saha, A.; Jesna, P.K.; Ramya, V.L.; Mol, S.S.; Panikkar, P.; Vijaykumar, M.E.; Sarkar, U.K.; Das, B.K. Phosphorus fractions in the sediment of a tropical reservoir, India: Implications for pollution source identification and eutrophication. Environ. Geochem. Health 2022, 44, 749–769. [Google Scholar] [CrossRef]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Huang, S.; Wang, Z.; Li, D. Cyanobacterial organic matter (COM) positive feedback aggravates lake eutrophication by changing the phosphorus release characteristics of sediments. Sci. Total Environ. 2023, 892, 164540. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Sun, Y.; Peñuelas, J.; Huang, J.; Sardans, J.; Jiang, Q.; Finlay, J.C.; Britten, G.L.; Follows, M.J.; et al. Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nat. Geosci. 2022, 15, 464–468. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Sun, P.; Ni, T. Response of cyanobacterial bloom risk to nitrogen and phosphorus concentrations in large shallow lakes determined through geographical detector: A case study of Taihu Lake, China. Sci. Total Environ. 2022, 816, 151617. [Google Scholar] [CrossRef]
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Zhu, G.; Cai, Y.; Xu, H.; Zhu, M.; Gong, Z.; Zhang, Y.; Qin, B. Quantifying the dependence of cyanobacterial growth to nutrient for the eutrophication management of temperate-subtropical shallow lakes. Water Res. 2020, 177, 115806. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, J.; Zhang, B.; Liu, Y.; Yan, K.; Gao, M.; Xie, Y.; Zhang, F.; Wang, S. Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations. Sci. Total Environ. 2023, 873, 162168. [Google Scholar] [CrossRef]
- Qin, B. Progress and prospect on the eco-environmental research of Lake Taihu. J. Lake Sci. 2009, 21, 445–455. (In Chinese) [Google Scholar] [CrossRef]
- Dai, X.; Qian, P.; Ye, L.; Song, T. Changes in nitrogen and phosphorus concentrations in Lake Taihu, 1985–2015. J. Lake Sci. 2016, 28, 935–943. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.; Qin, B.; Teubner, K.; Dokulil, M.T. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res. 2003, 25, 445–453. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, C.; Teubner, K.; Dokulil, M. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China: An 8-year investigation. Hydrobiologia 2003, 506, 273–279. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A Drinking Water Crisis in Lake Taihu, China: Linkage to Climatic Variability and Lake Management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef]
- Yan, X.; Xia, Y.; Ti, C.; Shan, J.; Wu, Y.; Yan, X. Thirty years of experience in water pollution control in Taihu Lake: A review. Sci. Total Environ. 2024, 914, 169821. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, J.; Zhu, G.; Gao, M.; Wen, L.; Yao, M.; Nie, Q. Occurrence characteristics of black patch events and their influencing factors in Lake Taihu during 2009 and 2017. J. Lake Sci. 2018, 30, 1196–1205. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, Y.; Ti, C.; Shan, J.; Li, B.; Xia, L.; Yan, X. Nitrogen Removal Capacity of the River Network in a High Nitrogen Loading Region. Environ. Sci. Technol. 2015, 49, 1427–1435. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Cai, Z.; Zhang, M.; Ye, C. Response of the nitrogen load and its driving forces in estuarine water to dam construction in Taihu Lake, China. Environ. Sci. Pollut. Res. 2020, 27, 31458–31467. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, W.; Wang, R.; Feng, G.; Xue, Z.; Zhao, S.; Lv, Y. Spatial and temporal variations in algal phosphorus in Taihu Lake. Blue-Green Syst. 2021, 3, 213–222. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Cheng, J. Main factors driving inter-annual variability of chlorophyll-a and the influence of future climate on chlorophyll-a in Lake Taihu. Chin. J. Ecol. 2015, 34, 1332–1341. (In Chinese) [Google Scholar] [CrossRef]
- Wu, P.; Lu, Y.; Lu, Y.; Dai, J.; Huang, T. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu. Water Environ. Res. 2020, 92, 138–148. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Y.; Kong, M.; Zhou, J.; Zhao, H.; Tang, Z.; Zhang, M.; Wang, Z. Insights into the long-term pollution trends and sources contributions in Lake Taihu, China using multi-statistic analyses models. Chemosphere 2020, 242, 125272. [Google Scholar] [CrossRef]
- Le, C.F.; Li, Y.M.; Zha, Y.; Sun, D.; Yin, B. Validation of a Quasi-Analytical Algorithm for Highly Turbid Eutrophic Water of Meiliang Bay in Taihu Lake, China. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2492–2500. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Ding, W.; Zhu, G.; Zhang, Y.; Gao, G.; Xu, H.; Li, W.; Dong, B.; Luo, L. Field Observation of Different Wind-Induced Basin-Scale Current Field Dynamics in a Large, Polymictic, Eutrophic Lake. J. Geophys. Res. Ocean. 2018, 123, 6945–6961. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Hall, N.S.; Wu, Y. Determining Critical Nutrient Thresholds Needed to Control Harmful Cyanobacterial Blooms in Eutrophic Lake Taihu, China. Environ. Sci. Technol. 2015, 49, 1051–1059. [Google Scholar] [CrossRef]
- Janssen, A.B.G.; de Jager, V.C.L.; Janse, J.H.; Kong, X.; Liu, S.; Ye, Q.; Mooij, W.M. Spatial identification of critical nutrient loads of large shallow lakes: Implications for Lake Taihu (China). Water Res. 2017, 119, 276–287. [Google Scholar] [CrossRef]
- Yi, Q.; Chen, Q.; Hu, L.; Shi, W. Tracking Nitrogen Sources, Transformation, and Transport at a Basin Scale with Complex Plain River Networks. Environ. Sci. Technol. 2017, 51, 5396–5403. [Google Scholar] [CrossRef] [PubMed]
- Qian, R.; Wang, X.; Gao, J.; Yang, H.; Han, J.; Zhang, Q.; Yan, R.; Liao, K.; Huang, J. A modelling framework to track phosphorus sources of the drinking water intakes in a large eutrophic lake. J. Hydrol. 2022, 607, 127564. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Yu, H.; Wang, Z. Estimation of Nutrient Export Loads in Taihu Lake Watershed Based on the Export Coefficient Model. Acta Agric. Univ. Jiangxiensis 2014, 36, 678–683. (In Chinese) [Google Scholar] [CrossRef]
- Tay, C.J.; Koh, H.L.; Mohd, M.H.; Teh, S.Y. Assessing the role of internal phosphorus recycling on eutrophication in four lakes in China and Malaysia. Ecol. Inform. 2022, 72, 101830. [Google Scholar] [CrossRef]
- Strokal, M.; Kroeze, C.; Wang, M.; Bai, Z.; Ma, L. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China. Sci. Total Environ. 2016, 562, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-L.; Chen, Y.-X.; Jilani, G.; Shamsi, I.H.; Yu, Q.-G. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin. J. Hazard. Mater. 2010, 174, 824–830. [Google Scholar] [CrossRef]
- Omesová, M.; Helešic, J. Organic matter and fine grains as possible determinants of spatial and seasonal variability in bed sediment fauna: A case study from a Hercynian gravel stream. Limnologica 2010, 40, 307–314. [Google Scholar] [CrossRef]
- Zhu, Q.D.; Sun, J.H.; Hua, G.F.; Wang, J.H.; Wang, H. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: A case study of the town of Xueyan, China. Environ. Sci. Pollut. Res. 2015, 22, 15029–15036. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Li, Q.; Kukkadapu, R.K.; Liu, E.; Yu, J.; Fang, H.; Li, H.; Jaisi, D.P. Identifying sources and cycling of phosphorus in the sediment of a shallow freshwater lake in China using phosphate oxygen isotopes. Sci. Total Environ. 2019, 676, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Guo, H.; Jia, Y.; Cao, Y.; Hu, C. Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao basin, Inner Mongolia. Geochemistry 2015, 75, 197–205. [Google Scholar] [CrossRef]
- Magyar, N.; Hatvani, I.G.; Székely, I.K.; Herzig, A.; Dinka, M.; Kovács, J. Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See. Ecol. Eng. 2013, 55, 82–92. [Google Scholar] [CrossRef]
- Singh, U.B.; Ahluwalia, A.S.; Jindal, R.; Sharma, C. Water Quality Assessment of Some Freshwater Bodies Supporting Vegetation in and Around Chandigarh (India), Using Multivariate Statistical Methods. Water Qual. Expo. Health 2013, 5, 149–161. [Google Scholar] [CrossRef]
- Ban, X.; Wu, Q.; Pan, B.; Du, Y.; Feng, Q. Application of Composite Water Quality Identification Index on the water quality evaluation in spatial and temporal variations: A case study in Honghu Lake, China. Environ. Monit. Assess. 2014, 186, 4237–4247. [Google Scholar] [CrossRef]
- Kim, S.-W.; Park, J.-S.; Kim, D.; Oh, J.-M. Runoff characteristics of non-point pollutants caused by different land uses and a spatial overlay analysis with spatial distribution of industrial cluster: A case study of the Lake Sihwa watershed. Environ. Earth Sci. 2014, 71, 483–496. [Google Scholar] [CrossRef]
- Sinha, K.; Das, P. Assessment of water quality index using cluster analysis and artificial neural network modeling: A case study of the Hooghly River basin, West Bengal, India. Desalination Water Treat. 2015, 54, 28–36. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, K.; Wu, Y.; Gao, S.; Cao, W.; Bo, Y.; Shang, Z.; Wu, J.; Zhou, F. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China). Water 2016, 8, 86. [Google Scholar] [CrossRef]
- Wang, A.; Tang, L.; Yang, D. Spatial and temporal variability of nitrogen load from catchment and retention along a river network: A case study in the upper Xin’anjiang catchment of China. Hydrol. Res. 2015, 47, 869–887. [Google Scholar] [CrossRef]
- Benoy, G.A.; Jenkinson, R.W.; Robertson, D.M.; Saad, D.A. Nutrient delivery to Lake Winnipeg from the Red—Assiniboine River Basin–A binational application of the SPARROW model. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 2016, 41, 429–447. [Google Scholar] [CrossRef]
- Shen, Z.; Liao, Q.; Hong, Q.; Gong, Y. An overview of research on agricultural non-point source pollution modelling in China. Sep. Purif. Technol. 2012, 84, 104–111. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Akhtar, T.; Ghimire, U.; Rudra, R.P.; Goel, P.K.; Shukla, R.; Daggupati, P. Can-GLWS: Canadian Great Lakes Weather Service for the Soil and Water Assessment Tool (SWAT) modelling. J. Great Lakes Res. 2021, 47, 242–251. [Google Scholar] [CrossRef]
- Adu, J.T.; Kumarasamy, M.V. Assessing Non-Point Source Pollution Models: A Review. Pol. J. Environ. Stud. 2018, 27, 1913–1922. [Google Scholar] [CrossRef]
- Zhang, W.; Pueppke, S.G.; Li, H.; Geng, J.; Diao, Y.; Hyndman, D.W. Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion. Environ. Pollut. 2019, 255, 113273. [Google Scholar] [CrossRef]
- Liu, R.; Yu, W.; Shi, J.; Wang, J.; Xu, F.; Shen, Z. Development of regional pollution export coefficients based on artificial rainfall experiments and its application in North China. Int. J. Environ. Sci. Technol. 2017, 14, 823–832. [Google Scholar] [CrossRef]
- Malve, O.; Tattari, S.; Riihimäki, J.; Jaakkola, E.; Voβ, A.; Williams, R.; Bärlund, I. Estimation of diffuse pollution loads in Europe for continental scale modelling of loads and in-stream river water quality. Hydrol. Process. 2012, 26, 2385–2394. [Google Scholar] [CrossRef]
- Robinson, T.H.; Melack, J.M. Modeling Nutrient Export From Coastal California Watersheds. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 793–809. [Google Scholar] [CrossRef]
- Wang, M.; Duan, L.; Bai, Y.; Peng, J.; Wang, Y.; Zheng, B. Improved export coefficient model for identification of watershed environmental risk areas. Environ. Sci. Pollut. Res. 2023, 30, 34649–34668. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, L.; Shen, Z. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution. Sci. Total Environ. 2020, 747, 141164. [Google Scholar] [CrossRef] [PubMed]
- Johnes, P.J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. J. Hydrol. 1996, 183, 323–349. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Fujibayashi, M.; Nomura, M.; Nishimura, O.; Li, X. Predominance of terrestrial organic matter in sediments from a cyanobacteria- blooming hypereutrophic lake. Ecol. Indic. 2015, 50, 35–43. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Zhu, J.; Li, G. Quantity of Nitrogen from Non-Point Source Pollution in Taihu Lake Catchment. J. Agro-Environ. Sci. 2003, 22, 150–153. (In Chinese) [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Zhu, J. Quantification of non-point sources phosphorus pollution in key protection area of Taihu Lake. Chin. J. Appl. Ecol. 2004, 15, 136–140. (In Chinese) [Google Scholar] [CrossRef]
- Guo, H.Y.; Wang, X.R.; Zhu, J.G. Quantification and Index of Non-Point Source Pollution in Taihu Lake Region with GIS. Environ. Geochem. Health 2004, 26, 147–156. [Google Scholar] [CrossRef]
- Duan, L.; Duan, Z.; Xia, S. Quantification of non-point pollution from uplands in Taihu Lake Catchment. Bull. Soil Water Conserv. 2006, 26, 40–43. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Yang, G.; Li, H. Estimation of nutrient export coefficient from different land use types in Xitiaoxi Watershed. J. Soil Water Conserv. 2007, 21, 1–4+34. (In Chinese) [Google Scholar] [CrossRef]
- Xue, L.; Yang, L. Research advances of export coefficient model for non-point source pollution. Chin. J. Ecol. 2009, 28, 755–761. (In Chinese) [Google Scholar] [CrossRef]
- Liu, B.; Liu, H.; Zhang, B.; Bi, J. Modeling Nutrient Release in the Tai Lake Basin of China: Source Identification and Policy Implications. Environ. Manag. 2013, 51, 724–737. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Zhou, L.; Xu, P. Non-point Pollution Control of Rural Watersheds in South Taihu Lake Basin. Resour. Sci. 2011, 33, 230–235. (In Chinese) [Google Scholar]
- Li, Z.; Yang, G.; Li, H. Estimated nutrient export loads based on improved export coefficient model in Xitiaoxi Watershed. Environ. Sci. 2009, 30, 668–672. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, G.; Tian, P.; Mu, X.; Gao, J.; Li, H.; Zhang, Z. Estimation of nitrogen and phosphorus loads in the Xitiaoxi catchment using PCRaster software. Adv. Water Sci. 2012, 23, 80–86. (In Chinese) [Google Scholar] [CrossRef]
- Wang, C.; Bi, J.; Zhang, X.-X.; Fang, Q.; Qi, Y. In-time source tracking of watershed loads of Taihu Lake Basin, China based on spatial relationship modeling. Environ. Sci. Pollut. Res. 2018, 25, 22085–22094. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Du, W.; Yang, C.; Wang, Y.; Huang, T.; Xu, X.; Li, W. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique. Front. Environ. Sci. Eng. 2022, 17, 55. [Google Scholar] [CrossRef]
- Ding, S.; Chen, M.; Gong, M.; Fan, X.; Qin, B.; Xu, H.; Gao, S.; Jin, Z.; Tsang, D.C.W.; Zhang, C. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci. Total Environ. 2018, 625, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Paerl, H.W.; Zhu, G.; Qin, B.; Hall, N.S.; Zhu, M. Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic Lake Taihu, China. Hydrobiologia 2017, 787, 229–242. [Google Scholar] [CrossRef]
- SØNdergaard, M.; Jeppesen, E.; Lauridsen, T.L.; Skov, C.; Van Nes, E.H.; Roijackers, R.; Lammens, E.; Portielje, R.O.B. Lake restoration: Successes, failures and long-term effects. J. Appl. Ecol. 2007, 44, 1095–1105. [Google Scholar] [CrossRef]
- Yang, C.; Yang, P.; Geng, J.; Yin, H.; Chen, K. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environ. Pollut. 2020, 262, 114292. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Bai, X.; Li, W. Effect of algal blooms outbreak and decline on phosphorus migration in Lake Taihu, China. Environ. Pollut. 2022, 296, 118761. [Google Scholar] [CrossRef]
- Qin, B.; Gao, G.; Zhu, G.; Zhang, Y.; Song, Y.; Tang, X.; Xu, H.; Deng, J. Lake eutrophication and its ecosystem response. Chin. Sci. Bull. 2013, 58, 961–970. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Q.; Pang, Y.; Hu, K. Research on nutrient pollution load in Lake Taihu, China. Environ. Sci. Pollut. Res. 2017, 24, 17829–17838. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, G.; Zhang, L.; Luo, L.; Gao, G.; Gu, B. Estimation of internal nutrient release in large shallow Lake Taihu, China. Sci. China Ser. D 2006, 49, 38–50. [Google Scholar] [CrossRef]
- Huang, S.; Zhao, H.; Fang, M. Sediment-water exchange capacity of total phosphorus in Taihu Lake caculated by mass budget model. Chin. J. Environ. Sci. 1992, 13, 83–84+97. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Wang, X.; Ma, J.; Xu, J.; Xu, X.; Han, R.; Zhou, Y.; Yan, X.; Wang, G. Isotopic evidence revealing spatial heterogeneity for source and composition of sedimentary organic matters in Taihu Lake, China. Ecol. Indic. 2020, 109, 105854. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Ji, M.; Wang, G.; Han, R.; Ma, J.; Yan, X.; Liu, J. Estimating sedimentary organic matter sources by multi-combined proxies for spatial heterogeneity in a large and shallow eutrophic lake. J. Environ. Manag. 2018, 224, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, W.; Fujibayashi, M.; Nomura, M.; Sakamaki, T.; Nishimura, O.; Li, X. Feedback of threshold via estimating sources and composition of sedimentary organic matter across trophic gradients in freshwater lakes. Sci. Total Environ. 2014, 500–501, 373–382. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. In Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China; Qin, B., Liu, Z., Havens, K., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 3–14. [Google Scholar]
- Wang, X.; Lu, Y.; He, G.; Han, J.; Wang, T. Multivariate Analysis of Interactions Between Phytoplankton Biomass and Environmental Variables in Taihu Lake, China. Environ. Monit. Assess. 2007, 133, 243–253. [Google Scholar] [CrossRef]
- Fu, H.; Gaüzère, P.; García Molinos, J.; Zhang, P.; Zhang, H.; Zhang, M.; Niu, Y.; Yu, H.; Brown, L.E.; Xu, J. Mitigation of urbanization effects on aquatic ecosystems by synchronous ecological restoration. Water Res. 2021, 204, 117587. [Google Scholar] [CrossRef]
- Yi, J.; Xu, F.; Gao, Y.; Xiang, L.; Mao, X. Variations of water quality of the major 22 inflow rivers since 2007 and impacts on Lake Taihu. J. Lake Sci. 2016, 28, 1167–1174. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Shen, R.; Fu, B. Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services. Sci. Total Environ. 2017, 607–608, 1376–1380. [Google Scholar] [CrossRef]
- Williams, M.R.; King, K.W. Changing Rainfall Patterns Over the Western Lake Erie Basin (1975–2017): Effects on Tributary Discharge and Phosphorus Load. Water Resour. Res. 2020, 56, e2019WR025985. [Google Scholar] [CrossRef]
- Min, J.; Ji, R.; Wang, X.; Chen, K.; Xu, J.; Pan, Y.; Lu, Z.; Lu, G.; Wang, Y.; Shi, W. Changes in planting structure and nitrogen and phosphorus loss loads of farmland in Taihu Lake region. Chin. J. Eco-Agric. 2020, 28, 1230–1238. (In Chinese) [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.; Ridoutt, B.G.; Wang, X.; Ren, P.-a. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Xing, G. Maintaining rice yield and reducing N pollution by substituting winter legume for wheat in a heavily-fertilized rice-based cropping system of southeast China. Agric. Ecosyst. Environ. 2015, 202, 79–89. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Wang, W.; Zhang, Y. Study on calculation of representative aquaculture pollution discharging coefficients in the Taihu Lake basin within Jiangsu Province. J. Agro-Environ. Sci. 2017, 36, 1330–1336. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Gao, J.; Butterly, C.R.; Chen, Q.; Liu, M.; Yang, Y.; Xi, Y.; Xiao, X. Effects of fertilizer types on nitrogen and phosphorous loss from rice-wheat rotation system in the Taihu Lake region of China. Agric. Ecosyst. Environ. 2019, 285, 106605. [Google Scholar] [CrossRef]
- Sun, X.; Hu, Z.; Li, M.; Liu, L.; Xie, Z.; Li, S.; Wang, G.; Liu, F. Optimization of pollutant reduction system for controlling agricultural non-point-source pollution based on grey relational analysis combined with analytic hierarchy process. J. Environ. Manag. 2019, 243, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; He, Y.; Wang, X.; Chen, Z.; Wei, X.; Lin, Y.; Cao, C.; Huang, M.; Zheng, B. A comprehensive assessment of upgrading technologies of wastewater treatment plants in Taihu Lake Basin. Environ. Res. 2022, 212, 113398. [Google Scholar] [CrossRef]
- Yuan, F.; Wei, Y.D.; Gao, J.; Chen, W. Water crisis, environmental regulations and location dynamics of pollution-intensive industries in China: A study of the Taihu Lake watershed. J. Clean. Prod. 2019, 216, 311–322. [Google Scholar] [CrossRef]
- GB 18918-2002; Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2003. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/200307/t20030701_66529.shtml (accessed on 9 August 2025).
- Hu, L.; Hu, W.; Zhai, S.; Wu, H. Effects on water quality following water transfer in Lake Taihu, China. Ecol. Eng. 2010, 36, 471–481. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Y.; Zhu, X.; Qin, J. Investigation of crucial measures for Taihu lake basin source administration. Jiangsu Water Resour. 2016, 4, 29–31. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, J.; Wang, S.; Lindley, S. Customizing the coefficients of urban domestic pollutant discharge and their driving mechanisms: Evidence from the Taihu Basin, China. J. Environ. Manag. 2018, 213, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; He, Y.; Chen, J.; Huang, Q.; Wang, H. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 2015, 38, 14–23. [Google Scholar] [CrossRef] [PubMed]
Pollutants | Analytical Methods | Demand Data | Source Types or Driving Factors | Reference |
---|---|---|---|---|
TN, TP | Machine learning | Water quality, main rivers entering the lake, sewage treatment plants, industrial output, meteorological conditions, etc. | Temperature, SS and TN in sewage, fertilizer yield, etc. | [68] |
TN, TP | Spatial relationship model | Sewage treatment plant emissions, rural sewage, agricultural activities, livestock and poultry breeding activities, land use, etc. | Farmland, rural sewage, livestock, etc. | [69] |
TN, TP | Direct calculation | River flux, pollutant concentration, etc. | Surrounding rivers, atmosphere, sediment, etc. | [70] |
TP | PSCI model | Meteorological, hydrological, and water quality | Sediment, inflow river | [71] |
TP | SPARROW model | River phosphorus flux, land cover, etc. | Land cover, river length, runoff depth, etc. | [72] |
Sediment Ns | Monte Carlo simulations | TOC content and isotopic ratios (δ13C and δ15N) of potential source samples | Aquatic macrophytes, algae bloom, inflow/outflow rivers, hydrodynamic changes | [73] |
TDN, TDP | MARINA-Lake model | Activity level data within the basin | Synthetic fertilizers, livestock manure, human waste, etc. | [5] |
TN, TP, NO3–N, NO2–N, PO43−, etc. | Multivariate statistical analysis | CODMn, TN, TP, Cl, and DO | Agriculture, domestic sewage, industry, etc. | [62] |
SOM | Fatty acid composition analysis | Composition of fatty acid biomarkers | Land plants, aquatic plants, algae, etc. | [74,75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, K.; Xing, B.; Li, Y.; Zhu, R.; Gao, X.; Cheng, X.; Sun, D.; Huang, K. Source Identification and Control of Eutrophication in Large Shallow Freshwater Lakes: A Case Study of Lake Taihu. Water 2025, 17, 2370. https://doi.org/10.3390/w17162370
Cui K, Xing B, Li Y, Zhu R, Gao X, Cheng X, Sun D, Huang K. Source Identification and Control of Eutrophication in Large Shallow Freshwater Lakes: A Case Study of Lake Taihu. Water. 2025; 17(16):2370. https://doi.org/10.3390/w17162370
Chicago/Turabian StyleCui, Ke, Bo Xing, Yuchen Li, Ran Zhu, Xiaozhong Gao, Xiang Cheng, Dezhi Sun, and Kai Huang. 2025. "Source Identification and Control of Eutrophication in Large Shallow Freshwater Lakes: A Case Study of Lake Taihu" Water 17, no. 16: 2370. https://doi.org/10.3390/w17162370
APA StyleCui, K., Xing, B., Li, Y., Zhu, R., Gao, X., Cheng, X., Sun, D., & Huang, K. (2025). Source Identification and Control of Eutrophication in Large Shallow Freshwater Lakes: A Case Study of Lake Taihu. Water, 17(16), 2370. https://doi.org/10.3390/w17162370