The Use of a Multi-Criteria Decision Analysis Method to Select the Most Favourable Type of Fish Pass in Mountainous Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Types of Selected Fish Passes
2.2. Use of Multi-Criteria Methods
3. Results
4. Discussion
4.1. The Sensitivity Analysis
4.2. The Problem of Selecting the Optimal Type of Fish Pass
4.3. Operating Conditions for the Block Ramps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Antychowicz, J.; Kujawa, R. Niekorzystne Zmiany Zachodzące w Śródlądowych Zbiornikach Wodnych Spowodowane Działalnością Człowieka. Życie Weterynaryjne 2017, 92, 735–744. [Google Scholar]
- Pimenta, L.; Caldeira, L.; Maranha Das Neves, E. A New Qualitative Method for the Condition Assessment of Earth and Rockfill Dams. Struct. Infrastruct. Eng. 2013, 9, 1103–1117. [Google Scholar] [CrossRef]
- Szałkiewicz, E.; Kałuża, T.; Grygoruk, M. Environmental Flows Assessment for Macroinvertebrates at the River Reach Scale in Different Degrees of Hydromorphological Alteration. Front. Environ. Sci. 2022, 10, 866526. [Google Scholar] [CrossRef]
- Kałuża, T.; Pietruczuk, K.; Szoszkiewicz, K.; Tymiński, T. Bewertung und Klassifizierung der Oberflächengewässer in Polen gemäß den WRRL-Anforderungen. Wasserwirtsch 2014, 104, 24–29. [Google Scholar] [CrossRef]
- Szałkiewicz, E.; Dysarz, T.; Kałuża, T.; Malinger, A.; Radecki-Pawlik, A. Analysis of in-stream restoration structures impact on hydraulic condition and sedimentation in the Finta river, Poland. Carpath. J. Earth Environ. Sci. 2019, 14, 275–286. [Google Scholar] [CrossRef]
- Zaborowski, S.; Kałuża, T.; Jusik, S. The Impact of Spontaneous and Induced Restoration on the Hydromorphological Conditions and Macrophytes, Example of Flinta River. Sustainability 2023, 15, 4302. [Google Scholar] [CrossRef]
- Hachoł, J.; Hämmerling, M.; Bondar-Nowakowska, E. Applying the Analytical Hierarchy Process (AHP) into the Effects Assessment of River Training Works. J. Water Land Dev. 2017, 35, 63–72. [Google Scholar] [CrossRef]
- Hämmerling, M.; Kałuża, T.; Zawadzki, P.; Zaborowski, S.; Sojka, M.; Liberacki, D.; Ptak, M. Application of Multi-Criteria Analytic Methods in the Assessment of the Technical Conditions of Small Hydraulic Structures. Buildings 2022, 12, 115. [Google Scholar] [CrossRef]
- Suntaranont, B.; Aramkul, S.; Kaewmoracharoen, M.; Champrasert, P. Water Irrigation Decision Support System for Practical Weir Adjustment Using Artificial Intelligence and Machine Learning Techniques. Sustainability 2020, 12, 1763. [Google Scholar] [CrossRef]
- Keller, R.J.; Peterken, C.J.; Berghuis, A.P. Design and Assessment of Weirs for Fish Passage under Drowned Conditions. Ecol. Eng. 2012, 48, 61–69. [Google Scholar] [CrossRef]
- Hur, J.W.; Jang, M.-H.; Shin, K.-H.; Lee, K.-L.; Chang, K.-H. Ecological Niche Space of Fish Communities in Impounded Sections of Large Rivers: Its Application to Assessment of the Impact of Weirs on River Ecosystems. Sustainability 2018, 10, 4784. [Google Scholar] [CrossRef]
- Tymiński, T.; Kałuża, T. Effect of Vegetation on Flow Conditions in the “Nature-like” Fishways. Annu. Set Environ. Prot. 2013, 15, 348–360. [Google Scholar]
- Voicu, R.; Radecki-Pawlik, A.; Tymiński, T.; Mokwa, M.; Sotir, R.; Voicu, L. A Potential Engineering Solution to Facilitate Upstream Movement of Fish in Mountain Rivers with Weirs: Southern Carpathians, the Azuga River. J. Mt. Sci. 2020, 17, 501–515. [Google Scholar] [CrossRef]
- Wierzbicki, M. Problematyka Przywrócenia Migracji Ryb Przez Obiekty Hydrotechniczne w Korytach Rzecznych. Landf. Anal. 2014, 24, 107–113. [Google Scholar] [CrossRef]
- Kozlov, D.; Yurchenko, A. The Role of Inspection of Hydraulic Structures in the Assessment of Their Technical Condition. IOP Conf. Ser. Mater. Sci. Eng. 2020, 883, 012049. [Google Scholar] [CrossRef]
- Shin, E.C.; Kim, D.H.; Lee, J.K.; Kang, J.K. Assessment of the Engineering Conditions of Small Dams Using the Analytical Hierarchy Process. Iran J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 1297–1305. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Zhu, D.Z.; Harwood, A.; Lewis, A.; Healey, K. Rock-Weir Fishway I: Flow Regimes and Hydraulic Characteristics. J. Ecohydraulics 2017, 2, 122–141. [Google Scholar] [CrossRef]
- Roscoe, D.W.; Hinch, S.G. Effectiveness Monitoring of Fish Passage Facilities: Historical Trends, Geographic Patterns and Future Directions. Fish Fish. 2010, 11, 12–33. [Google Scholar] [CrossRef]
- Katopodis, C.; Kells, J.A.; Acharya, M. Nature-Like and Conventional Fishways: Alternative Concepts? Can. Water Resour. J. 2001, 26, 211–232. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, F.; Chen, X.; Wang, J. Application of Artificial Intelligence in the Study of Fishing Vessel Behavior. Fishes 2023, 8, 516. [Google Scholar] [CrossRef]
- Pieckiel, P.; Kozłowski, K.; Kuczyński, T. Ecological Potential of Freshwater Dam Reservoirs Based on Fish Index, First Evaluation in Poland. Water 2024, 16, 2169. [Google Scholar] [CrossRef]
- Jing, M.; Jie, Y.; Shou-yi, L.; Lu, W. Application of Fuzzy Analytic Hierarchy Process in the Risk Assessment of Dangerous Small-Sized Reservoirs. Int. J. Mach. Learn. Cyber. 2018, 9, 113–123. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Interfaces 1994, 24, 19–43. [Google Scholar] [CrossRef]
- Hämmerling, M. Selection of the optimal type of fish pass using the Rembrandt method. Acta Sci. Pol. Form. Circumiectus 2019, 18, 51–61. [Google Scholar] [CrossRef]
- Samaras, G.D.; Gkanas, N.I.; Vitsa, K.C. Assessing Risk in Dam Projects Using AHP and ELECTRE I. Int. J. Constr. Manag. 2014, 14, 255–266. [Google Scholar] [CrossRef]
- Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. A Systematic Review of Application of Multi-Criteria Decision Analysis for Aging-Dam Management. J. Clean. Prod. 2017, 147, 217–230. [Google Scholar] [CrossRef]
- Nowak, M. Metody ELECTRE w Deterministycznych i Stochastycznych Problemach Decyzyjnych. Decyzje 2004, 2, 36–65. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996; Volume 4922. [Google Scholar]
- Tymiński, T.; Mumot, J.; Strojny, R.; Karpowicz, D. Analysis of the Potential of Building Ramps in Hydrotechnical Structures as a Means of Facilitating Fish Migration. Acta Sci. Pol. Form. Circumiectus 2016, 15, 151–162. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of Application of Analytic Hierarchy Process (AHP) in Construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Rodríguez Pérez, Á.M.; Rodríguez, C.A.; Olmo Rodríguez, L.; Caparros Mancera, J.J. Revitalizing the Canal de Castilla: A Community Approach to Sustainable Hydropower Assessed through Fuzzy Logic. Appl. Sci. 2024, 14, 1828. [Google Scholar] [CrossRef]
- Hämmerling, M.; Kocięcka, J.; Zaborowski, S. AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions. Sustainability 2021, 13, 1304. [Google Scholar] [CrossRef]
- Ikram, M.; Zhang, Q.; Sroufe, R. Developing Integrated Management Systems Using an AHP-Fuzzy VIKOR Approach. Bus. Strategy Environ. 2020, 29, 2265–2283. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Tan, Q.; Khan, M.W.A.; Mirjat, N.H.; Ahmed, I. The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application. Energies 2018, 11, 1940. [Google Scholar] [CrossRef]
- Franek, J.; Kresta, A. Judgment Scales and Consistency Measure in AHP. Procedia Econ. Financ. 2014, 12, 164–173. [Google Scholar] [CrossRef]
- Sun, B.; Tang, J.; Yu, D.; Song, Z.; Wang, P. Ecosystem Health Assessment: A PSR Analysis Combining AHP and FCE Methods for Jiaozhou Bay, China1. Ocean Coast. Manag. 2019, 168, 41–50. [Google Scholar] [CrossRef]
- Wolnowska, A.E.; Konicki, W. Multi-Criterial Analysis of Oversize Cargo Transport through the City, Using the AHP Method. Transp. Res. Procedia 2019, 39, 614–623. [Google Scholar] [CrossRef]
- Plesiński, K.K.; Filipczyk, J.M.; Bień, M.M.; Karadağ, M. Assessment of Migration Conditions for Fish Swimming through a Semi-Natural Fish Pass on the Nidzica River in Bronocice. J. Water Land Dev. 2023, 59, 54–65. [Google Scholar] [CrossRef]
- Mumot, J.; Tymiński, T. Hydraulic research of sediment transport in the vertical slot fish passes. J. Ecol. Eng. 2016, 17, 143–148. [Google Scholar] [CrossRef]
- Tymiński, T.; Mumot, J.; Karpowicz, D.; Jianxin, X. Sedimentation of Load in a Step-Pool Rock Ramp Fishway with Biotechnical Embedded Elements. Meteorol. Hydrol. Water Manag. Res. Oper. Appl. 2017, 5, 35–42. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, J.; Cai, W.; Liu, Z.; Li, J.; Yin, J.; Zu, J.; Dou, C. Response of Fish Habitat Quality to Weir Distribution Change in Mountainous River Based on the Two-Dimensional Habitat Suitability Model. Sustainability 2023, 15, 8698. [Google Scholar] [CrossRef]
- Cavallini, E.; Viaroli, P.; Naldi, M.; Saccò, M.; Scibona, A.; Barbieri, E.; Franceschini, S.; Nizzoli, D. Seasonal Variability and Hydrological Patterns Influence the Long-Term Trends of Nutrient Loads in the River Po. Water 2024, 16, 2628. [Google Scholar] [CrossRef]
- Bartnik, W.; Mokwa, M.; Strutyński, M.; Wyrębek, M.; Florek, J.; Leja, M.; Hawryło, A.; Tarnawski, K.; Popek, W.; Szczerbiak, P.; et al. Monitoring i Ocena Efektywności Funkcjonowania Przepławki Dla Ryb Powstałej Po Przebudowie Jazu Piętrzącego Na Rzece San w Km 168+850; Pectore-Eco Sp. Z o.o.: Gliwice, Poland, 2015. [Google Scholar]
- Kukułka, A.; Wirkus, M. Metody Wielokryterialne Wspomagania Decyzji Oraz Ich Zastosowanie w Opracowaniu Metody Oceny Niepotokowych Procesów Produkcyjnych. Innow. W Zarządzaniu I Inżynierii Prod. 2017, 1, 612–623. [Google Scholar]
- Trzaskalik, T. Wielokryterialne Wspomaganie Decyzji. Przegląd Metod i Zastosowań. Zesz. Naukowe. Organ. I Zarządzanie/Politech. Śląska 2014, 74, 239–263. [Google Scholar]
- Olson, D.L.; Fliedner, G.; Currie, K. Comparison of the Rembrandt system with Analytic Hierarchy Process. Eur. J. Oper. Res. 1995, 82, 522–539. [Google Scholar] [CrossRef]
- Więckowski, J.; Sałabun, W. Sensitivity Analysis Approaches in Multi-Criteria Decision Analysis: A Systematic Review. Appl. Soft Comput. 2023, 148, 110915. [Google Scholar] [CrossRef]
- Venus, T.E.; Smialek, N.; Pander, J.; Harby, A.; Geist, J. Evaluating Cost Trade-Offs between Hydropower and Fish Passage Mitigation. Sustainability 2020, 12, 8520. [Google Scholar] [CrossRef]
- Wolter, C.; Schomaker, C. Fish Passes Design Discharge Requirements for Successful Operation. River Res. Appl. 2019, 35, 1697–1701. [Google Scholar] [CrossRef]
- Čubanová, L.; Rumann, J.; Vidová, A.; Almikaeel, W.; Rebenda, F. Verification of Hydraulic Parameters of Nature-like Fish Pass. Water 2023, 15, 2478. [Google Scholar] [CrossRef]
- Kubrak, M.; Smoliński, B.; Riha, J.; Kodura, A.; Popielski, P.; Jabłoński, K. The application of a minimum specific energy concept for a fish ladder design. Arch. Civ. Eng. 2022, LXVIII, 555–568. [Google Scholar] [CrossRef]
- Kucukali, S.; Hassinger, R. Flow and Turbulence Structure in a Vertical Slot–Brush Fish Pass. In Recent Trends in Environmental Hydraulics; Kalinowska, M.B., Mrokowska, M.M., Rowiński, P.M., Eds.; GeoPlanet: Earth and Planetary Sciences; Springer International Publishing: Cham, Switzerland, 2020; pp. 137–146. ISBN 978-3-030-37104-3. [Google Scholar]
- Kasperek, R.; Szkudlarek, A.; Mokwa, M. High gradient meander-modular fish passes for hydroelectric power objects. Acta Sci. Pol., Form. Circumiectus 2019, 18, 125–136. [Google Scholar] [CrossRef]
- Mokwa, M.; Sobota, J.; Tymiński, T.; Ciura, M.; Goleń, P. Przepławka Meandrowa-Modułowa. Gospod. Wodna 2012, 8, 343–348. [Google Scholar]
- Li, G.; Sun, S.; Liu, H.; Zheng, T. Optimizing the Entrance Location for a Fish Pass Facility with Limited Attraction Flow in a Large River—A Case Study of the Jinsha River, China. Can. J. Civ. Eng. 2019, 46, 847–857. [Google Scholar] [CrossRef]
- Lindberg, D.-E.; Leonardsson, K.; Andersson, A.G.; Lundström, T.S.; Lundqvist, H. Methods for Locating the Proper Position of a Planned Fishway Entrance near a Hydropower Tailrace. Limnologica 2013, 43, 339–347. [Google Scholar] [CrossRef]
- Radecki-Pawlik, B.; Radecki-Pawlik, A.; Plesiński, K.; Kukuła, K.; Bylak, A. On some chosen exploitation problems and biological functionality of interlocked carpet block ramps. Acta Sci. Pol. Form. Circumiectus 2017, 1, 127–147. [Google Scholar] [CrossRef]
- Plesiński, K.; Bylak, A.; Radecki-Pawlik, A.; Mikołajczyk, T.; Kukuła, K. Possibilities of Fish Passage through the Block Ramp: Model-Based Estimation of Permeability. Sci. Total Environ. 2018, 631–632, 1201–1211. [Google Scholar] [CrossRef]
- Pagliara, S.; Chiavaccini, P. Energy Dissipation on Reinforced Block Ramps. J. Irrig. Drain Eng. 2006, 132, 293–297. [Google Scholar] [CrossRef]
- Pagliara, S.; Palermo, M. Scour Control Downstream of Block Ramps. J. Hydraul. Eng. 2008, 134, 1376–1382. [Google Scholar] [CrossRef]
- Pagliara, S.; Palermo, M. Scour Control and Surface Sediment Distribution Downstream of Block Ramps. J. Hydraul. Res. 2008, 46, 334–343. [Google Scholar] [CrossRef]
- Pagliara, S.; Palermo, M.; Carnacina, I. Scour and Hydraulic Jump Downstream of Block Ramps in Expanding Stilling Basins. J. Hydraul. Res. 2009, 47, 503–511. [Google Scholar] [CrossRef]
- Plesiński, K.; Radecki-Pawlik, A.; Galia, T.; Gibbins, C. Block Ramp Hydraulic Structures in Mountain Streams and Rivers: Design Considerations, Flow Hydraulics and Eco-Geomorphic Processes; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2021; p. 270. ISBN 978-83-7986-345-7. [Google Scholar]
- Plesiński, K.; Radecki-Pawlik, A. Funkcja Bystrzy o Zwiększonej Szorstkości w Utrzymaniu Rzek i Potoków Górskich. In Procesy Fluwialne a Utrzymanie Rzek i Potoków Górskich; Wydawnictwo Uniwersytetu Jagiellońskiego: Kraków, Poland, 2021; pp. 456–478. [Google Scholar]
- Plesinski, K.; Gibbins, C.N.; Radecki-Pawlik, A. Effects of Interlocked Carpet Ramps on Upstream Movement of Brown Trout Salmo Trutta in an Upland Stream. J. Ecohydraulics 2020, 5, 3–30. [Google Scholar] [CrossRef]
- Radecki-Pawlik, A. Renaturyzacja Rzek i Potoków Górskich–Techniczny i Socjologiczny Aspekt Zagadnienia. Acta Sci. Pol. Form. Circumiectus 2010, 9, 33–42. [Google Scholar]
- Korpak, J.; Krzemien, K.; Radecki-Pawlik, A. Wpływ Czynników Antropogenicznych Na Zmiany Koryt Cieków Karpackich. Infrastrukt. I Ekol. Teren. Wiej. 2008, 74, 239–263. [Google Scholar]
- Rajwa-Kuligiewicz, A.; Radecki-Pawlik, A.; Skalski, T.; Plesiński, K.; Rowiński, P.M.; Manson, J.R. Hydromorphologically-Driven Variability of Thermal and Oxygen Conditions at the Block Ramp Hydraulic Structure: The Porębianka River, Polish Carpathians. Sci. Total Environ. 2020, 713, 136661. [Google Scholar] [CrossRef]
- Good River Maintenance Practices; Prus, P.; Popek, Z.; Pawlaczyk, P. (Eds.) Wydanie II, poprawione i uzupełnione; WWF Polska: Warszawa, Poland, 2018; ISBN 978-83-62069-49-1. [Google Scholar]
- Radecki-Pawlik, A. O Niektórych Bliskich Naturze Rozwiązaniach Utrzymania Koryt Rzek i Potoków Górskich. Gospod. Wodna 2010, 2, 78–85. [Google Scholar]
- Radecki-Pawlik, A. Cultural Landscapes of River Valleys. In Rapid Hydraulic Structures as Close-to-Nature Models of Mountain River and Stream Training; Publishing House of the University of Agriculture in Krakow: Kraków, Poland, 2010; pp. 165–172. ISBN 978-83-60633-42-7. [Google Scholar]
- Halaj, P.; Božoň, V. Súčasné Prístupy k Návrhu Úprav Korýt Vodných Tokov; Publishing House (SPU) of the Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2010. [Google Scholar]
No. | Comparative Assessment | Rembrandt | AHP |
---|---|---|---|
1. | Very strong advantage between factors Ci and Cj | −8 | 1/9 |
2. | Strong advantage between factors Ci and Cj | −6 | 1/7 |
3. | Clear advantage between factors Ci and Cj | −4 | 1/5 |
4. | Slight advantage between factors Ci and Cj | −2 | 1/3 |
5. | Balance between factors Ci and Cj | 0 | 1 |
6. | Slight advantage between factors Ci and Cj | 2 | 3 |
7. | Clear advantage between factors Ci and Cj | 4 | 5 |
8. | Strong advantage between factors Ci and Cj | 6 | 7 |
9. | Very strong advantage between factors Ci and Cj | 8 | 9 |
Type of Fish Pass | Multi-Criteria Decision Analysis Method | |
---|---|---|
AHP | Rembrandt | |
Slotted fish pass | 0.23 | 0.13 |
Circulation channel with boulders | 0.15 | 0.11 |
Block ramp for fish | 0.63 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hämmerling, M.; Kałuża, T.; Tymiński, T.; Plesiński, K. The Use of a Multi-Criteria Decision Analysis Method to Select the Most Favourable Type of Fish Pass in Mountainous Areas. Water 2024, 16, 3118. https://doi.org/10.3390/w16213118
Hämmerling M, Kałuża T, Tymiński T, Plesiński K. The Use of a Multi-Criteria Decision Analysis Method to Select the Most Favourable Type of Fish Pass in Mountainous Areas. Water. 2024; 16(21):3118. https://doi.org/10.3390/w16213118
Chicago/Turabian StyleHämmerling, Mateusz, Tomasz Kałuża, Tomasz Tymiński, and Karol Plesiński. 2024. "The Use of a Multi-Criteria Decision Analysis Method to Select the Most Favourable Type of Fish Pass in Mountainous Areas" Water 16, no. 21: 3118. https://doi.org/10.3390/w16213118
APA StyleHämmerling, M., Kałuża, T., Tymiński, T., & Plesiński, K. (2024). The Use of a Multi-Criteria Decision Analysis Method to Select the Most Favourable Type of Fish Pass in Mountainous Areas. Water, 16(21), 3118. https://doi.org/10.3390/w16213118