Study on the Evolution Mechanism of Temporal Variability of Chloride Ions in Typical Districts of Ordos City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Measurements
2.2.1. Groundwater Sample Collection and Testing
2.2.2. Soil Sample Collection and Testing
2.2.3. Rainfall Data
2.3. Research Methods
2.3.1. Autocorrelation Function (ACF)—Periodic Analysis
2.3.2. Fast Fourier Transform (FFT)—Periodicity Analysis
2.3.3. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Rainfall and Cl Concentration Evolution with Time in the Study Area
3.2. Background Values of Cl Ions in the Study Area
3.3. Chloride Ion Content in Soil
3.4. Analysis of the Correlation between Cl Ions and Rainfall
3.4.1. Cyclic Analysis of Chloride Ion Concentration Variations
3.4.2. Correlation Analysis between Chloride Ion Concentration and Rainfall Amount
3.4.3. Result of the Correlation Analysis
3.4.4. Result of the Regression Analysis
3.5. Error Verification of the Regression Equations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, N.; Liu, J.; Xia, X.; Gu, S.; Wu, Y.; Li, X.; Jiang, S. Identification of Contaminant Source and Hydraulic Conductivity Field Based on an ILUES-SOM Surrogate Model. Stoch. Environ. Res. Risk Assess. 2023, 37, 2725–2738. [Google Scholar] [CrossRef]
- Li, Y.; Lu, W.; Pan, Z.; Wang, Z.; Dong, G. Simultaneous Identification of Groundwater Contaminant Source and Hydraulic Parameters Based on Multilayer Perceptron and Flying Foxes’ Optimization. Environ. Sci. Pollut. Res. 2023, 30, 78933–78947. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Wu, Y.; Fan, J.; Ye, F.; Xie, C.; Fu, X.; Sun, Y. Identification of Nitrogen Pollution Sources and Transport Transformation Processes in Groundwater of Different Landforms Using C, H, N, and O Isotope Techniques: An Example from the Lower Weihe River. Environ. Sci. Pollut. Res. 2023, 30, 29442–29457. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yang, D.; Sun, Q.; Gan, Y.; Bai, L.; Li, S.; Liu, D.; Dai, J. Combining Multi-Isotope Technology, Hydrochemical Information, and MixSIAR Model to Identify and Quantify Nitrate Sources of Groundwater and Surface Water in a Multi-Land Use Region. Environ. Sci. Pollut. Res. 2023, 30, 80070–80084. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gui, H.; Jiang, C.; Zha, J.; Zheng, L. Hydrogeochemistry and Stable Hydrogen and Oxygen Isotope Characteristics of Deep Limestone Water in the Huainan Panxie Mining Area. Arab. J. Geosci. 2022, 15, 1133. [Google Scholar] [CrossRef]
- Irrgeher, J.; Prohaska, T. Application of Non-Traditional Stable Isotopes in Analytical Ecogeochemistry Assessed by MC ICP-MS—A Critical Review. Anal. Bioanal. Chem. 2015, 408, 369–385. [Google Scholar] [CrossRef]
- Wang, G.; Gao, H.; Long, B.; Wu, J. Progress of Nitrate Isotope-Coupled Multi-Tracer Traceability of Groundwater Nitrate Contamination. J. Appl. Ecol. 2024, 35, 970–984. [Google Scholar]
- Long, Z. Huangshui River Basin Water Environment Quality Comprehensive Evaluation and Typical Pollutants Traceability and Control Countermeasures Research. Ph.D. Thesis, Shandong University, Jinan, China, 2022. [Google Scholar]
- Lin, B.; Qi, F.; An, X.; Zhao, C.; Gao, Y.; Liu, Y.; Zhong, Y.; Qiu, B.; Wang, Z.; Hu, Q.; et al. Review: The Application of Source Analysis Methods in Tracing Urban Non-Point Source Pollution: Categorization, Hotspots, and Future Prospects. Environ. Sci. Pollut. Res. 2024, 31, 23482–23504. [Google Scholar] [CrossRef]
- Peng, L.; Jianyuan, C.; Ji, L.; Tiantian, W.; Jian, Y. Hydrogeochemical Characteristics and Solute Sources of Groundwater in the Yuhengbei Mining Area, Shaanxi Province, China. Environ. Earth Sci. 2022, 81, 516. [Google Scholar] [CrossRef]
- Chakraborty, P.; Wood, D.A.; Singh, S.; Hazra, B. Trace Element Contamination in Soils Surrounding the Open-Cast Coal Mines of Eastern Raniganj Basin, India. Environ. Geochem. Health 2023, 45, 7275–7302. [Google Scholar] [CrossRef]
- Han, X.; Tang, F.; Liu, A.L. Drinking Water Quality Evaluation in Supply Systems in Wuhan, China: Application of Entropy Weight Water Quality Index and Multivariate Statistical Analysis. Environ. Sci. Pollut. Res. 2024, 31, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Jean-Michel, M.; Alexandre, D. Origin of Cl− and High δ37Cl Values in Radiocarbon Dated-Fracture Groundwaters at the Tournemire URL (France). Procedia Earth Planet. Sci. 2013, 7, 574–577. [Google Scholar] [CrossRef]
- Moncada-Aguilar, A.M.; Ramírez-Hernández, J.; Quintero-Núñez, M.; Avendaño-Reyes, L. Origin of Salinity in Groundwater of Neighboring Villages of the Cerro Prieto Geothermal Field. Water Air Soil Pollut. 2010, 213, 389–400. [Google Scholar] [CrossRef]
- Khazaei, E.; Milne-Home, W. Applicability of Geochemical Techniques and Artificial Sweeteners in Discriminating the Anthropogenic Sources of Chloride in Shallow Groundwater North of Toronto, Canada. Environ. Monit. Assess. 2017, 189, 218. [Google Scholar] [CrossRef]
- Ma, R.; Li, L.; Zhang, B. Impact Assessment of Anthropogenic Activities on the Ecological Systems in the Xiongan New Area in the North China Plain. Integr. Environ. Assess. Manag. 2021, 12, 866–876. [Google Scholar] [CrossRef]
- Tursun, A. Study on Spatial and Temporal Changes of Salinized Soil and Groundwater Characteristics in Wei-Ku Oasis. Ph.D. Thesis, Xinjiang University, Ürümqi, China, 2012. [Google Scholar]
- Tengfei, F. Research Application of Spatial and Temporal Variability of Soil Salinization and Monitoring System in Typical Coastal Areas. Ph.D. Thesis, Graduate School of Chinese Academy of Sciences (Institute of Oceanography), Qingdao, China, 2015. [Google Scholar]
- Fei, L. Soil Water-Salt Characteristics of Minqin Oasis and Its Relationship with Groundwater. Master’s Thesis, Lanzhou University, Lanzhou, China, 2019. [Google Scholar]
- Huang, G.; Sun, J.; Qi, J.; Zang, Y.; Chen, J.; Jing, J. Isotopic Composition of Ordos Groundwater in Relation to Climate Change. J. Earth Sci. 2007, 06, 550–554. [Google Scholar]
- Xuekun, Y. Characterization of Precipitation in Ordos City in the Recent 50 Years. Inn. Mong. Sci. Econ. 2017, 22, 66–67, 81. [Google Scholar]
- Zhang, L.; Zheng, Y.; Xu, J.; Xu, G.; Li, Y. Characteristics of Spatial and Temporal Distribution of Heavy Rainfall and Disaster Defense in Ordos City under the Background of Climate Warming. Inn. Mong. Meteorol. 2020, 4, 14–16. [Google Scholar]
- Sun, L.; Yuan, L.; Fu, Q.; Nie, X.; Yu, H.; Tang, J.; Dong, L. Effects of Rainfall on Exogenous Cl⁻ Leaching Efficiency and Its Spatial Distribution in Soils with Different Textures. J. Northeast Agric. Univ. 2022, 53, 27–38. [Google Scholar]
- Kincaid, D.W.; Findlay, S.E.G. Sources of Elevated Chloride in Local Streams: Groundwater and Soils as Potential Reservoirs. Water Air Soil Pollut. 2009, 203, 335–342. [Google Scholar] [CrossRef]
- NY/T 1378-2007; Determination of Chloride Ion Content in Soil. China Standards Press: Beijing, China, 2007.
- Jiang, W.; Sheng, Y.; Wang, G.; Shi, Z.; Liu, F.; Zhang, J.; Chen, D. Cl, Br, B, Li, and Noble Gases Isotopes to Study the Origin and Evolution of Deep Groundwater in Sedimentary Basins: A Review. Environ. Chem. Lett. 2022, 20, 1497–1528. [Google Scholar] [CrossRef]
- Sheng, Y.; Baars, O.; Guo, D.; Whitham, J.; Srivastava, S.; Dong, H. Mineral-Bound Trace Metals as Cofactors for Anaerobic Biological Nitrogen Fixation. Environ. Sci. Technol. 2023, 57, 7206–7216. [Google Scholar] [CrossRef] [PubMed]
AA’ Chloride Ion Concentration Profile | BB’ Chloride Ion Concentration Profile | ||||||
---|---|---|---|---|---|---|---|
Point Serial No. | Distance (km) | Chloride (mg/L) | Hydraulic Gradient | Point Serial No. | Distance (km) | Chloride (mg/L) | Hydraulic Gradient |
ZK01 | 0 | 19.4 | - | ZK04 | 0 | 58.3 | - |
ZK02 | 4.314 | 21.0 | 0.0063 | ZK05 | 5.326 | 68.1 | 0.0130 |
ZK03 | 6.889 | 80.6 | 0.0050 | ZK06 | 9.011 | 109.0 | 0.0008 |
CQ01 | 12.045 | 158.78 | 0.0012 | CQ01 | 11.744 | 158.95 | 0.0015 |
ZK07 | 14.831 | 226 | 0.0022 | ZK07 | 14.534 | 226 | 0.0022 |
Profundity (m) | Soluble Chlorine (mg/kg) | ||
---|---|---|---|
Dot Mark | ZK6 | CQ01 | ZK7 |
0–2 m | 131 | 160 | 86 |
2–4 m | 57 | 120 | 120 |
4–6 m | 91 | 112 | 111 |
6–8 m | 120 | 184 | 85 |
8–10 m | 104 | 249 | 88 |
10–12 m | 83 | 168 | 68 |
12–14 m | 62 | 176 | 54 |
Chloride Ion Concentration (mg/L) | >5 mm Days | >10 mm Days | >15 mm Days | >20 mm Days | >30 mm Days | >40 mm Days | >50 mm Days |
---|---|---|---|---|---|---|---|
280 | 22 | 15 | 5 | 1 | 0 | 0 | 0 |
259 | 4 | 3 | 2 | 0 | 0 | 0 | 0 |
198 | 4 | 1 | 0 | 0 | 0 | 0 | 0 |
245 | 9 | 7 | 3 | 1 | 1 | 1 | 0 |
300 | 13 | 9 | 5 | 2 | 1 | 1 | 0 |
284 | 14 | 10 | 5 | 2 | 1 | 1 | 0 |
261 | 8 | 4 | 2 | 1 | 0 | 0 | 0 |
145 | 4 | 1 | 0 | 0 | 0 | 0 | 0 |
198 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
215 | 5 | 2 | 0 | 0 | 0 | 0 | 0 |
388 | 20 | 16 | 9 | 4 | 2 | 1 | 1 |
430 | 23 | 20 | 12 | 5 | 2 | 1 | 1 |
453 | 21 | 16 | 10 | 5 | 2 | 1 | 1 |
396 | 16 | 12 | 7 | 3 | 2 | 1 | 1 |
206 | 7 | 3 | 2 | 1 | 0 | 0 | 0 |
230 | 4 | 2 | 1 | 1 | 1 | 0 | 0 |
234 | 5 | 2 | 1 | 1 | 1 | 0 | 0 |
219 | 5 | 2 | 1 | 1 | 1 | 0 | 0 |
238 | 6 | 2 | 1 | 1 | 1 | 0 | 0 |
Chloride Ion Concentration (mg/L) | All Days Rainfall | >5 mm Rainfall | >10 mm Rainfall | >15 mm Rainfall | >20 mm Rainfall | >30 mm Rainfall | >40 mm Rainfall | >50 mm Rainfall |
---|---|---|---|---|---|---|---|---|
280 | 326.31 | 271.78 | 215.68 | 90.77 | 21.67 | 0 | 0 | 0 |
259 | 72.66 | 53.74 | 46.2 | 33.02 | 0 | 0 | 0 | 0 |
198 | 73.1 | 33.3 | 10.76 | 0 | 0 | 0 | 0 | 0 |
245 | 180.5 | 141.07 | 126.07 | 78.06 | 41.53 | 41.53 | 41.53 | 0 |
300 | 258.52 | 197.03 | 170.29 | 122.28 | 67.75 | 41.53 | 41.53 | 0 |
284 | 263.36 | 205.15 | 183.04 | 122.28 | 67.75 | 41.53 | 41.53 | 0 |
261 | 156.24 | 89.97 | 67.73 | 44.22 | 26.22 | 0 | 0 | 0 |
145 | 67.6 | 28.39 | 11.68 | 0 | 0 | 0 | 0 | 0 |
198 | 57.31 | 28.75 | 0 | 0 | 0 | 0 | 0 | 0 |
215 | 80.18 | 42.97 | 20.56 | 0 | 0 | 0 | 0 | 0 |
388 | 440.14 | 372.85 | 343.98 | 256.88 | 171.38 | 119.99 | 81.28 | 81.28 |
430 | 498.67 | 433.88 | 413.3 | 313.69 | 194.23 | 119.99 | 81.28 | 81.28 |
453 | 458.46 | 394.95 | 358.32 | 279.27 | 194.23 | 119.99 | 81.28 | 81.28 |
396 | 341.39 | 308.78 | 278.61 | 210.08 | 142.84 | 119.99 | 81.28 | 81.28 |
206 | 110.04 | 84.35 | 54.18 | 41.67 | 22.85 | 0 | 0 | 0 |
230 | 96 | 64.92 | 48.87 | 36.89 | 36.89 | 36.89 | 0 | 0 |
234 | 101.55 | 77.2 | 48.87 | 36.89 | 36.89 | 36.89 | 0 | 0 |
219 | 103 | 77.2 | 48.87 | 36.89 | 36.89 | 36.89 | 0 | 0 |
238 | 113.8 | 84.93 | 48.87 | 36.89 | 36.89 | 36.89 | 0 | 0 |
Rainfall Intensity | >0 mm | >5 mm | >10 mm | >15 mm | >20 mm | >30 mm | >40 mm | >50 mm |
---|---|---|---|---|---|---|---|---|
correlation coefficient | 0.937 ** | 0.945 ** | 0.951 ** | 0.966 ** | 0.947 ** | 0.896 ** | 0.906 ** | 0.899 ** |
two-tailed test | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, L.; Zhang, B.; Zhou, R.; Jiang, R.; Dong, W.; Ma, R.; Liu, S. Study on the Evolution Mechanism of Temporal Variability of Chloride Ions in Typical Districts of Ordos City. Water 2024, 16, 2935. https://doi.org/10.3390/w16202935
Si L, Zhang B, Zhou R, Jiang R, Dong W, Ma R, Liu S. Study on the Evolution Mechanism of Temporal Variability of Chloride Ions in Typical Districts of Ordos City. Water. 2024; 16(20):2935. https://doi.org/10.3390/w16202935
Chicago/Turabian StyleSi, Letian, Bing Zhang, Ruiqing Zhou, Ruirui Jiang, Wanggang Dong, Rong Ma, and Sihang Liu. 2024. "Study on the Evolution Mechanism of Temporal Variability of Chloride Ions in Typical Districts of Ordos City" Water 16, no. 20: 2935. https://doi.org/10.3390/w16202935
APA StyleSi, L., Zhang, B., Zhou, R., Jiang, R., Dong, W., Ma, R., & Liu, S. (2024). Study on the Evolution Mechanism of Temporal Variability of Chloride Ions in Typical Districts of Ordos City. Water, 16(20), 2935. https://doi.org/10.3390/w16202935