A Regional Paleoclimate Record of the Tropical Aeolian Sands during the Last Deglaciation in Hainan, China
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Overview of the Natural Environment of Hainan Island
2.2. Study Area and the KLD Segment
2.3. Analytical Methods
- P: fraction weight of a part of the sample.
- p: weight of useful minerals.
- y: volume percentage of useful minerals.
- n: number of reduction.
3. Results
3.1. Ages of the KLD Segment
3.2. Grain Size
3.3. Major Chemical Elements
3.4. Detrital Heavy Minerals
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stuiver, M.; Grootes, P.M.; Braziunas, T.F. GISP2 δ18O Climate record of past 16,500 years and the role of the Sun, ocean, and volcanoes. Quat. Res. 1995, 44, 341. [Google Scholar] [CrossRef]
- Kapuz, N.K.; Jansen, E.A. A high-resolution diatom record of the last deglaciation from the SE Norweigian Sea: Documentation of rapid climate changes. Paleoceanography 1992, 7, 499. [Google Scholar] [CrossRef]
- Bensen, L.; Burdett, T.; Lund, S.; Kashgarian, M.; Mensing, S. Nearly Synchronous climate changes in the Northern Hemisphere during the last glacial termination. Nature 1997, 388, 263. [Google Scholar] [CrossRef]
- Jouzel, J.; Vaikmae, R.; Petit, J.R.; Martin, M.; Duclos, Y.; Stievenard, M.; Lorius, C.; Toots, M.; Mélières, M.A.; Burckle, L.H.; et al. The two-step shape and timing of the last deglaciation in Antarctic. Clim. Dyn. 1995, 11, 151. [Google Scholar] [CrossRef]
- Zhou, W.J.; An, Z.S.; Porter, S.C.; Donahue, D.; Jull, A.J.T. Comparison of climatic events in East Asia and the Norwegian Sea during the last deglaciation. China Sci. Ser. D 1997, 27, 260. (In Chinese) [Google Scholar]
- Wang, J.M.; Shi, Q.; Chen, F.H.; Xia, D.S. Rapid change of East Asian monsoon from Loess record since the last deglaciation period and its comparison with GISP2 ice core record in Greenland. Chin. Sci. Bull. 1998, 43, 1007. (In Chinese) [Google Scholar]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.C.; Dorale, J.A. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef]
- Wang, W.Y.; Liu, J.Q.; Peng, P.A.; Negendank, J. Comparison of climatic events recorded by Maar Lake in tropical Huguangyan during the last deglaciation with GSIPZ records. Prog. Nat. Sci. 2000, 10, 824–829. (In Chinese) [Google Scholar]
- Lu, H.Y.; Liu, J.Q.; Chu, G.Q.; Gu, Z.Y.; Negendank, J.; Schettler, G.; Mingram, J. A study of pollen and environment in the Huguangyan Maar Lake since the last Glaciation. Acta Palaeontol. Sin. 2003, 42, 284–291. (In Chinese) [Google Scholar]
- Wang, L.J.; Bian, Y.H.; Wang, P.X. The last Deglaciation in the South China Sea and the rapid climate return event. Quat. Sci. 1994, 14, 1–12. [Google Scholar]
- Luo, Y.L.; Sun, X.J. Vegetation evolution and Millennium-scale climate events recorded by sporopollen in the northern South China Sea since the last glacial period. Chin. Sci. Bull. 2005, 50, 691–697. (In Chinese) [Google Scholar]
- Li, X.; Sun, X.J. Palynological records since last Glacial Maximum from a deep sea core in the southern China Sea. Quat. Sci. 1999, 19, 526–535. (In Chinese) [Google Scholar]
- Jiao, B.C.; Liu, M.G.; Zhang, X.E. Comprehensive Natural Division in Physical Geography of China, 2nd ed.; China Map Publishing House: Beijing, China, 1997; p. 111. [Google Scholar]
- Wu, Z.; Huang, S.; Hu, S.Z. Geomorphology of Aeolian Coast in South China; Science Press: Alexandria, NSW, Australia, 1995. [Google Scholar]
- Liao, X.X.; Li, S.; Wang, G.Y.; Li, Z.L. Grain-size Features of Aeolian Sands on Eastern Coast of Hainan Island and the Reflected Sedimentary Environment since 38ka BP. J. Desert Res. 2009, 29, 1086–1092. (In Chinese) [Google Scholar]
- Zeng, L.H.; Li, S.; Li, B.S.; Li, H.C.; Zheng, Y.H. The Genesis and Environmental Significance of the Sandy Sediments of the Upper Basuo Formation in Western Hainan Island. Geol. Rev. 2007, 53, 783–790. (In Chinese) [Google Scholar]
- Li, S.; Liao, X.X.; Wang, G.Y. Climatic and environmental changes in the coastal sandy land of Hainan Island in recent 40ka. Geogr. Res. 2009, 28, 1235–1242. (In Chinese) [Google Scholar]
- Zhang, S.H.; Yan, P.; Li, S. Primary Research on Coastal Sandy Land in Hainan Island by137 Cs Technique. J. Desert Res. 2007, 27, 932–935. (In Chinese) [Google Scholar]
- Wang, F.; Si, Y.; Li, B.; Niu, D.; Li, Z.; Wen, X.; Yang, Z. Variations in the aeolian sequence Zr/Rb ratios in the Mu Us Desert during the Holocene and their implications for the East Asian monsoon. Aeolian Res. 2022, 54, 100753. [Google Scholar] [CrossRef]
- Lu, H.Y.; An, Z.S. Pretreatment methods influences on grain size measurement of Loess. Chin. Sci. Bull. 1997, 42, 2535–2538. [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos Reviver bar: A study in the significance of grain size parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Niu, D.F.; Li, B.; Bai, Q. Salawusu Phenomenon; Geology Press: Beijing, China, 2023; pp. 160–173. [Google Scholar]
- Li, B.; Wen, X.; David, D.; Qiu, S.; Dong, Y.; Li, Z.; Du, S.; Ou, X.; Li, H.; Niu, D.; et al. Paleoclimate change recorded in the red earth and brown-yellow sediment of Late Quaternary for northeastern part of Guangdong Province, south to the Nanling Mountains, China. Chin. Sci. Bull. 2008, 53, 3866–3875. [Google Scholar] [CrossRef]
- Liu, T.S. Loess and Environment; Science Press: Beijing, China, 1985. [Google Scholar]
- Zhou, J.; Yang, C.P.; Sun, G.H.; Luo, W.D.; Zhao, L. Potential analysis of valuable heavy minerals in surface sediments in the shallow waters of the southwest of Hainan Island. Geol. Sci. Technol. Inf. 2018, 37, 89–96. (In Chinese) [Google Scholar]
- Xu, D.K.; Lu, H.Y.; Wu, N.Q. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes. Proc. Natl. Acad. Sci. USA 2013, 110, 9657–9662. [Google Scholar] [CrossRef] [PubMed]
- Wenchang Local Annals Compilation Committee. Wenchang City Annals (1990–2010); Fangzhi Publishing House: Beijing, China, 2020. [Google Scholar]
- Zhanjiang Meteorological Bureau. 2017 Zhanjiang Climate Bulletin. 23 August 2018. Available online: http://gd.cma.gov.cn/zjsqxj/zwgk_2986/zwyw_3016/gzdt_3017/201808/t20180823_73042.html (accessed on 19 September 2024).
- Oppo, D.W.; Sun, Y. Amplitude and timing of sea-surface temperature changes in the norther South China Sea: Dynamic link to East Asia monsoon. Geology 2005, 33, 785–788. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, C.Y.; Wang, C.C.; Wei, G. A millennial-scale Uk′37− sea surface temperature record from the South China Sea (8°) over last 150 kyr: Monsoon and sea-surface influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 236, 39–55. [Google Scholar] [CrossRef]
- Port, S.C.; An, Z. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 1995, 375, 305–308. [Google Scholar]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Bickert, T.; Berger, W.; Burke, S.; Schmidt, H.; Wefer, G. Late Quaternary stable isotope record of benthic foraminiferas site: 805 and 806, Ontong Java Plateau. Proc. Ocean. Drill. Program Sci. Results 1993, 130, 411–420. [Google Scholar]
- Xiao, L.J.; Chen, M.D. The climate dynamics of the West Pacific Warm Pool on the millennial to orbital time scales. J. Earth Environ. 2011, 2, 569–604. (In Chinese) [Google Scholar]
- Yin, Y.Q.; Dang, H.W.; Wang, Y.; Qiao, P.; Jian, Z. Millennial-and centennial-scale variations in the upper-water temperature of Western Pacific Warm Pool during the last deglaciation. Chin. Sci. Bull. 2019, 64, 2151–2162. (In Chinese) [Google Scholar] [CrossRef]
- Garzanti, E.; Resentini, A. Provenance control on chemical indices of weathering (Taiwan river sands). Sediment. Geol. 2016, 336, 81–95. [Google Scholar] [CrossRef]
- Brahim, Y.A.; Sha, L.; Wassenburg, J.A.; Azennoud, K.; Cheng, H.; Cruz, F.W.; Bouchaou, L. The spatiotemporal extent of the Green Sahara during the last glacial period. iScience 2023, 26. [Google Scholar] [CrossRef] [PubMed]
Number | Location | Depth (m) | U (×10−6) | Th (×10−6) | K% | E.D (Gy) | Annual Dose (mGy) | OSL Age (ka) |
---|---|---|---|---|---|---|---|---|
20G-74 | top | 0.75 | 1.93 ± 0.09 | 16.69 ± 0.90 | 0.22 ± 0.00 | 25.74 ± 1.79 | 2.74 ± 0.11 | 9.4 ± 0.8 |
20G-76 | middle | 0.92 | 2.10 ± 0.12 | 16.69 ± 0.44 | 0.27 ± 0.00 | 37.86 ± 1.88 | 2.77 ± 0.11 | 13.7 ± 1.0 |
19G-150 | bottom | 1.07 | 1.46 | 11.86 | 0.25 | 33.41 ± 2.86 | 2.08 ± 0.08 | 16.1 ± 1.5 |
Grade | Very Coarse Grain + Coarse Grain | Medium Sand | Fine Sand | Very Fine Sand | Coarse Silt | Fine Silt | Clay | Mz (ϕ) | σ |
---|---|---|---|---|---|---|---|---|---|
Range | 0.02–96.68 | 3.32–29.36 | 0–43.58 | 0–14.82 | 0–20.91 | 0–6.62 | 0–21.96 | 2.75–4.82 | 1.70–3.10 |
Average | 4.76 | 20.56 | 37.73 | 11.48 | 13.83 | 3.56 | 8.11 | 3.45 | 2.07 |
Element | Min | Max | Average | Element | Min | Max | Average |
---|---|---|---|---|---|---|---|
SiO2 | 68.74 | 81.66 | 73.40 | Na2O | 0.08 | 0.15 | 0.12 |
Al2O3 | 10.04 | 14.25 | 12.63 | K2O | 0.39 | 0.47 | 0.44 |
Fe2O3 | 3.4 | 3.9 | 3.62 | MgO | 0.01 | 0.14 | 0.09 |
CaO | 0.06 | 0.07 | 0.06 | SiO2/Al2O3 | 6.85 | 5.73 | 5.81 |
CIA | 93.10 | 94.92 | 94.13 |
Mineral | WC02-37 | WC02-46 | WC03-08 | ||||||
---|---|---|---|---|---|---|---|---|---|
Particle Number | Mineral Weight (mg) | Percentage | Particle Number | Mineral Weight (mg) | Percentage | Particle Number | Mineral Weight (mg) | Percentage | |
anatase | 14 | 10.70 | 3.17 | 18 | 10.28 | 2.81 | 14 | 10.52 | 3.08 |
topaz | 30 | 1 | 0.57 | 0.16 | 8 | ||||
staurolite | 2 | 1.53 | 0.45 | 2 | 1.14 | 0.31 | 2 | 1.50 | 0.44 |
ilmenite | 220 | 168.12 | 49.89 | 302 | 172.44 | 47.11 | 233 | 175.01 | 51.32 |
magnetite | 1 | 0.76 | 0.23 | 1 | 0.57 | 0.16 | 1 | 0.75 | 0.22 |
hematite limonite | 3 | 2.29 | 0.68 | 4 | 2.28 | 0.62 | 3 | 2.25 | 0.66 |
leucoxene | 31 | 23.69 | 7.03 | 59 | 33.69 | 9.20 | 35 | 26.29 | 7.71 |
monazite | 1 | 0.76 | 0.23 | 1 | 0.57 | 0.16 | 30 | ||
zircon | 108 | 82.53 | 24.49 | 142 | 81.08 | 22.15 | 88 | 66.10 | 19.38 |
rutile | 15 | 11.46 | 3.40 | 19 | 10.85 | 2.96 | 14 | 10.52 | 3.08 |
tourmaline | 23 | 17.58 | 5.22 | 58 | 33.12 | 9.05 | 39 | 29.29 | 8.59 |
others | 23 | 17.58 | 5.22 | 34 | 19.41 | 5.30 | 25 | 18.78 | 5.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Li, B.; Niu, D.; Li, X.; Si, Y.; Shu, P.; Li, Z.; Du, S.; Chen, Q.; Chen, M. A Regional Paleoclimate Record of the Tropical Aeolian Sands during the Last Deglaciation in Hainan, China. Water 2024, 16, 2901. https://doi.org/10.3390/w16202901
Wang F, Li B, Niu D, Li X, Si Y, Shu P, Li Z, Du S, Chen Q, Chen M. A Regional Paleoclimate Record of the Tropical Aeolian Sands during the Last Deglaciation in Hainan, China. Water. 2024; 16(20):2901. https://doi.org/10.3390/w16202901
Chicago/Turabian StyleWang, Fengnian, Baosheng Li, Dongfeng Niu, Xiaoze Li, Yuejun Si, Peixian Shu, Zhiwen Li, Shuhuan Du, Qiwen Chen, and Min Chen. 2024. "A Regional Paleoclimate Record of the Tropical Aeolian Sands during the Last Deglaciation in Hainan, China" Water 16, no. 20: 2901. https://doi.org/10.3390/w16202901
APA StyleWang, F., Li, B., Niu, D., Li, X., Si, Y., Shu, P., Li, Z., Du, S., Chen, Q., & Chen, M. (2024). A Regional Paleoclimate Record of the Tropical Aeolian Sands during the Last Deglaciation in Hainan, China. Water, 16(20), 2901. https://doi.org/10.3390/w16202901