Revealing Public Perceptions of Biodiverse vs. Turf Swales: Balancing Enhanced Ecosystem Services with Heightened Concerns
Abstract
:1. Introduction
- What ecosystem benefits do the public perceive from biodiverse and turf swales? How do levels of perception differ between the two types of bioswales?
- What concerns do the public have about biodiverse and turf swales, and how do they compare?
- How do the four municipal areas compare to each other in terms of concerns and benefit perception?
- Does the implementation of bioswales influence people’s perception of benefits and concerns?
2. Materials and Methods
2.1. Research Design and Sampling Protocols
2.2. Data Analysis
3. Results
3.1. Sample Characteristics
3.2. Perceived Benefits of Biodiverse and Turf Swales
3.3. Concerns about Turf and Biodiverse Swales
3.4. City/County Differences
4. Discussion
4.1. Enhanced Ecosystem Benefits from Biodiverse Swales than Turf Swales
4.2. Higher Concerns over Biodiverse Swales than Turf Swales
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. The United Nations World Water Development Report 2020: Water and Climate Change; United Nations: New York, NY, USA, 2020. [Google Scholar]
- McPhillips, L.E.; Matsler, A.M. Temporal Evolution of Green Stormwater Infrastructure Strategies in Three US Cities. Front. Built Environ. 2018, 4, 26. [Google Scholar] [CrossRef]
- Keeley, M.; Koburger, A.; Dolowitz, D.P.; Medearis, D.; Nickel, D.; Shuster, W. Perspectives on the Use of Green Infrastructure for Stormwater Management in Cleveland and Milwaukee. Environ. Manag. 2013, 51, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Montalto, F.A. Stakeholder Perceptions of the Ecosystem Services Provided by Green Infrastructure in New York City. Ecosyst. Serv. 2019, 37, 100928. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S.E. Stormwater Management and Ecosystem Services: A Review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-Functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Wang, R.; Wu, H.; Chiles, R. Ecosystem Benefits Provision of Green Stormwater Infrastructure in Chinese Sponge Cities. Environ. Manag. 2022, 69, 558–575. [Google Scholar] [CrossRef]
- Choi, C.; Berry, P.; Smith, A. The Climate Benefits, Co-Benefits, and Trade-Offs of Green Infrastructure: A Systematic Literature Review. J. Environ. Manag. 2021, 291, 112583. [Google Scholar] [CrossRef]
- Perrelet, K.; Moretti, M.; Dietzel, A.; Altermatt, F.; Cook, L.M. Engineering Blue-Green Infrastructure for and with Biodiversity in Cities. npj Urban Sustain. 2024, 4, 27. [Google Scholar] [CrossRef]
- Filazzola, A.; Shrestha, N.; MacIvor, J.S. The Contribution of Constructed Green Infrastructure to Urban Biodiversity: A Synthesis and Meta-Analysis. J. Appl. Ecol. 2019, 56, 2131–2143. [Google Scholar] [CrossRef]
- West, C.; Wu, H. The Next Green Revolution: Rebuilding Urban Abundance through Plant Community-Based Design. Landsc. Archit. 2020, 27, 8–24. [Google Scholar] [CrossRef]
- Miller, J.R.; Hobbs, R.J. Conservation where People Live and Work. Conserv. Biol. 2002, 16, 330–337. [Google Scholar] [CrossRef]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing Cities Using a Regionally-Focused Biodiversity-Led Multifunctional Benefits Approach to Urban Green Infrastructure. Environ. Sci. Policy 2016, 62, 99–111. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Zenodo: Geneva, Switzerland, 2019. [Google Scholar]
- Winfrey, B.K.; Payne, E.G.I.; Ambrose, R.F. Understanding the Roles of Biodiversity and Functional Diversity in Provision of Co-Benefits by Stormwater Biofilter Plant Communities. In Proceedings of the International Low Impact Development Conference 2018, Nashville, TN, USA, 12–15 August 2018; pp. 203–212. [Google Scholar] [CrossRef]
- Winfrey, B.K.; Hatt, B.E.; Ambrose, R.F. Biodiversity and Functional Diversity of Australian Stormwater Biofilter Plant Communities. Landsc. Urban Plan. 2018, 170, 112–137. [Google Scholar] [CrossRef]
- Técher, D.; Berthier, E. Supporting Evidences for Vegetation-Enhanced Stormwater Infiltration in Bioretention Systems: A Comprehensive Review. Environ. Sci. Pollut. Res. 2023, 30, 19705–19724. [Google Scholar] [CrossRef]
- Heidari, B.; Randle, S.; Minchillo, D.; Jaber, F.H. Green Stormwater Infrastructure: A Critical Review of the Barriers and Solutions to Widespread Implementation. WIREs Water 2023, 10, e1625. [Google Scholar] [CrossRef]
- Qi, J.; Barclay, N. Social Barriers and the Hiatus from Successful Green Stormwater Infrastructure Implementation across the US. Hydrology 2021, 8, 10. [Google Scholar] [CrossRef]
- Meenar, M.; Howell, J.P.; Moulton, D.; Walsh, S. Green Stormwater Infrastructure Planning in Urban Landscapes: Understanding Context, Appearance, Meaning, and Perception. Land 2020, 9, 534. [Google Scholar] [CrossRef]
- Cholakis-Kolysko, K. One Neighbor’s Curb Garden, Another’s Weedy Pit: Municipal and Designer Perspectives on Public Perception of Green Street Rain Garden Appearance. Master’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2022. [Google Scholar]
- Everett, G.; Lawson, E.; Lamond, J. Green Infrastructure and Urban Water Management. In Handbook on Green Infrastructure; Edward Elgar Publishing: Cheltenham, UK, 2015. [Google Scholar]
- Byrne, J.A.; Lo, A.Y.; Jianjun, Y. Residents’ Understanding of the Role of Green Infrastructure for Climate Change Adaptation in Hangzhou, China. Landsc. Urban Plan. 2015, 138, 132–143. [Google Scholar] [CrossRef]
- Barnhill, K.; Smardon, R. Gaining Ground: Green Infrastructure Attitudes and Perceptions from Stakeholders in Syracuse, New York. Environ. Pract. 2012, 14, 6–16. [Google Scholar] [CrossRef]
- Homet, K.; Kremer, P.; Smith, V.; Strader, S. Multi-Variable Assessment of Green Stormwater Infrastructure Planning across a City Landscape: Incorporating Social, Environmental, Built-Environment, and Maintenance Vulnerabilities. Front. Environ. Sci. 2022, 10, 958704. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Lopez, D.; McCuskey, D.J.; Kiefus, D.; McDonald, R.I.; Miller, W.M.; Packman, A.I.; Young, S.L. Knowledge, Attitudes, Intentions, and Behavior Related to Green Infrastructure for Flood Management: A Systematic Literature Review. Sci. Total Environ. 2020, 720, 137606. [Google Scholar] [CrossRef] [PubMed]
- Church, S.P. Exploring Green Streets and Rain Gardens as Instances of Small Scale Nature and Environmental Learning Tools. Landsc. Urban Plan. 2015, 134, 229–240. [Google Scholar] [CrossRef]
- Chini, C.M.; Canning, J.F.; Schreiber, K.L.; Peschel, J.M.; Stillwell, A.S. The Green Experiment: Cities, Green Stormwater Infrastructure, and Sustainability. Sustainability 2017, 9, 105. [Google Scholar] [CrossRef]
- Brown, H.L.; Bos, D.G.; Walsh, C.J.; Fletcher, T.D.; RossRakesh, S. More than Money: How Multiple Factors Influence Householder Participation in at-Source Stormwater Management. J. Environ. Plan. Manag. 2016, 59, 79–97. [Google Scholar] [CrossRef]
- Turner, V.K.; Jarden, K.; Jefferson, A. Resident Perspectives on Green Infrastructure in an Experimental Suburban Stormwater Management Program. Cities Environ. 2016, 9, 4. [Google Scholar]
- Cote, S.A.; Wolfe, S.E. Assessing the Social and Economic Barriers to Permeable Surface Utilization for Residential Driveways in Kitchener, Canada. Environ. Pract. 2014, 16, 6–18. [Google Scholar] [CrossRef]
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H. Green Infrastructure for Urban Climate Adaptation: How Do Residents’ Views on Climate Impacts and Green Infrastructure Shape Adaptation Preferences? Landsc. Urban Plan. 2017, 157, 106–130. [Google Scholar] [CrossRef]
- Rajapaksa, D.; Islam, M.; Managi, S. Pro-Environmental Behavior: The Role of Public Perception in Infrastructure and the Social Factors for Sustainable Development. Sustainability 2018, 10, 937. [Google Scholar] [CrossRef]
- Kollmuss, A.; Agyeman, J. Mind the Gap: Why Do People Act Environmentally and What Are the Barriers to pro-Environmental Behavior? Environ. Educ. Res. 2002, 8, 239–260. [Google Scholar] [CrossRef]
- Ando, A.W.; Netusil, N.R. Valuing the Benefits of Green Stormwater Infrastructure. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2018; ISBN 978-0-19-938941-4. [Google Scholar]
- Baptiste, A.K.; Foley, C.; Smardon, R. Understanding Urban Neighborhood Differences in Willingness to Implement Green Infrastructure Measures: A Case Study of Syracuse, NY. Landsc. Urban Plan. 2015, 136, 1–12. [Google Scholar] [CrossRef]
- Barclay, N.; Klotz, L. Role of Community Participation for Green Stormwater Infrastructure Development. J. Environ. Manag. 2019, 251, 109620. [Google Scholar] [CrossRef]
- Wang, R.; Brent, D.; Wu, H. Willingness to Pay for Ecosystem Benefits of Green Stormwater Infrastructure in Chinese Sponge Cities. J. Clean. Prod. 2022, 371, 133462. [Google Scholar] [CrossRef]
- Elliott, R.M.; Motzny, A.E.; Majd, S.; Chavez, F.J.V.; Laimer, D.; Orlove, B.S.; Culligan, P.J. Identifying Linkages between Urban Green Infrastructure and Ecosystem Services Using an Expert Opinion Methodology. Ambio 2020, 49, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.C.; Low, S.C.; Henning, J.; Branas, C.C. The Impact of Green Stormwater Infrastructure Installation on Surrounding Health and Safety. Am. J. Public Health 2015, 105, E114–E121. [Google Scholar] [CrossRef] [PubMed]
- Venkataramanan, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; McCuskey, D.J.; McDonald, R.I.; Miller, W.M.; Young, S.L. A Systematic Review of the Human Health and Social Well-Being Outcomes of Green Infrastructure for Stormwater and Flood Management. J. Environ. Manag. 2019, 246, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Suppakittpaisarn, P.; Jiang, X.; Sullivan, W.C. Green Infrastructure, Green Stormwater Infrastructure, and Human Health: A Review. Curr. Landsc. Ecol. Rep. 2017, 2, 96–110. [Google Scholar] [CrossRef]
- Spahr, K.M.; Smith, J.M.; McCray, J.E.; Hogue, T.S. Reading the Green Landscape: Public Attitudes toward Green Stormwater Infrastructure and the Perceived Nonmonetary Value of Its Co-Benefits in Three US Cities. J. Sustain. Water Built Environ. 2021, 7, 04021017. [Google Scholar] [CrossRef]
- Rainey, W.; McHale, M.; Arabi, M. Characterization of Co-Benefits of Green Stormwater Infrastructure across Ecohydrologic Regions in the United States. Urban For. Urban Green. 2022, 70, 127514. [Google Scholar] [CrossRef]
- Wilbers, G.-J.; de Bruin, K.; Seifert-Dähnn, I.; Lekkerkerk, W.; Li, H.; Budding-Polo Ballinas, M. Investing in Urban Blue–Green Infrastructure—Assessing the Costs and Benefits of Stormwater Management in a Peri-Urban Catchment in Oslo, Norway. Sustainability 2022, 14, 1934. [Google Scholar] [CrossRef]
- National Association of City Transportation Officials Urban Street Design Guide—Bioswales. Available online: https://nacto.org/publication/urban-street-design-guide/street-design-elements/stormwater-management/bioswales/ (accessed on 30 August 2024).
- Kelley, K.; Todd, M.; Hopfer, H.; Centinari, M. Identifying Wine Consumers Interested in Environmentally Sustainable Production Practices. Int. J. Wine Bus. Res. 2021, 34, 86–111. [Google Scholar] [CrossRef]
- Meenar, M.; Heckert, M.; Adlakha, D. “Green Enough Ain’t Good Enough:” Public Perceptions and Emotions Related to Green Infrastructure in Environmental Justice Communities. Int. J. Environ. Res. Public Health 2022, 19, 1448. [Google Scholar] [CrossRef] [PubMed]
- Gmoser-Daskalakis, K. Incentivizing Private Property Green Infrastructure: Recommendations for Los Angeles County; University of California Los Angeles Luskin Center for Innovation: Los Angeles, CA, USA, 2019. [Google Scholar]
- Benedict, M.A.; McMahon, E.T.; Fund, M.A.T.C. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2012; ISBN 978-1-59726-764-9. [Google Scholar]
- Brent, D.A.; Gangadharan, L.; Lassiter, A.; Leroux, A.; Raschky, P.A. Valuing Environmental Services Provided by Local Stormwater Management. Water Resour. Res. 2017, 53, 4907–4921. [Google Scholar] [CrossRef]
- Rhodes, C.G.; Scavo, N.A.; Finney, M.; Fimbres-Macias, J.P.; Lively, M.T.; Strauss, B.H.; Hamer, G.L. Meta-Analysis of the Relative Abundance of Nuisance and Vector Mosquitoes in Urban and Blue-Green Spaces. Insects 2022, 13, 271. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.B.; McPhearson, T.; Herzog, C.P.; Russ, A. Green Infrastructure. In Urban Environmental Education Review; Russ, A., Krasny, M.E., Russ, A., Eds.; Cornell University Press: Ithaca, NY, USA, 2017; ISBN 978-1-5017-0582-3. [Google Scholar]
- Taguchi, V.J.; Weiss, P.T.; Gulliver, J.S.; Klein, M.R.; Hozalski, R.M.; Baker, L.A.; Finlay, J.C.; Keeler, B.L.; Nieber, J.L. It Is Not Easy Being Green: Recognizing Unintended Consequences of Green Stormwater Infrastructure. Water 2020, 12, 522. [Google Scholar] [CrossRef]
- Paus, K.H.; Morgan, J.; Gulliver, J.S.; Leiknes, T.; Hozalski, R.M. Effects of Temperature and NaCl on Toxic Metal Retention in Bioretention Media. J. Environ. Eng. 2014, 140, 04014034. [Google Scholar] [CrossRef]
- Small, G.; Shrestha, P.; Metson, G.S.; Polsky, K.; Jimenez, I.; Kay, A. Excess Phosphorus from Compost Applications in Urban Gardens Creates Potential Pollution Hotspots. Environ. Res. Commun. 2019, 1, 091007. [Google Scholar] [CrossRef]
City/County | Total % | Total N | ||||
---|---|---|---|---|---|---|
Philadelphia, PA | New York City, NY | Montgomery County, MD | Prince George’s County, MD | |||
Sample size | 244 | 228 | 178 | 131 | 100% | 781 |
Gender | ||||||
Male | 35% | 64% | 42% | 34% | 45% | 350 |
Female | 64% | 36% | 58% | 65% | 54% | 425 |
Age | ||||||
21–33 | 14% | 15% | 16% | 19% | 16% | 122 |
34–57 | 60% | 58% | 57% | 50% | 57% | 444 |
58–67 | 18% | 15% | 19% | 20% | 17% | 136 |
≥68 | 8% | 13% | 8% | 12% | 10% | 79 |
Education level | ||||||
High school/GED or below | 20% | 13% | 7% | 23% | 15% | 119 |
Technical/vocational | 8% | 3% | 0% | 5% | 4% | 32 |
Some college | 25% | 12% | 16% | 24% | 19% | 151 |
Bachelor’s | 26% | 29% | 37% | 24% | 29% | 226 |
Master’s and Ph.D. | 21% | 44% | 40% | 24% | 32% | 253 |
Household income (2021) | ||||||
<USD 49,999 | 43% | 19% | 12% | 28% | 27% | 208 |
USD 50,000–99,999 | 29% | 25% | 21% | 30% | 26% | 204 |
USD 100,000–149,999 | 16% | 21% | 28% | 24% | 21% | 166 |
≥USD 150,000 | 6% | 31% | 33% | 13% | 21% | 160 |
Benefit | Bioswale Type | N | Level of Perception | t-Test Statistics | |
---|---|---|---|---|---|
Mean | S.D. | ||||
Average of 13 benefits * | Biodiverse | 779 | 4.93 | 1.05 | t(778) = 7.857, p < 0.001; d = 0.282 |
Turf | 778 | 4.67 | 1.09 | ||
Average of environmental benefits * | Biodiverse | 778 | 5.16 | 1.09 | t(776) = 13.163, p < 0.001; d = 0.472 |
Turf | 778 | 4.59 | 1.22 | ||
Average of social benefits * | Biodiverse | 779 | 4.82 | 1.18 | t(777) = 3.695, p < 0.001; d = 0.132 |
Turf | 778 | 4.68 | 1.17 | ||
Economic benefit | Biodiverse | 780 | 4.89 | 1.48 | t(773) = 1.032, p = 0.302; d = 0.037 |
Turf | 777 | 4.84 | 1.42 |
Benefits | Group | Biodiverse Swales | Turf Swales | ||||
---|---|---|---|---|---|---|---|
N | Mean | S.D. | N | Mean | S.D. | ||
Flood mitigation | Actual | 251 | 4.82 * | 1.40 | 317 | 4.93 | 1.40 |
Assumed | 529 | 5.26 | 1.39 | 462 | 4.79 | 1.45 | |
t-test statistics | t(778) = 4.081, p < 0.001, d = 0.313 | t(777) = −1.298, p = 0.195 | |||||
UHI mitigation | Actual | 250 | 4.75 | 1.52 | 314 | 4.75 † | 1.57 |
Assumed | 528 | 4.87 | 1.40 | 462 | 4.33 | 1.48 | |
t-test statistics | t(776) = 1.114, p = 0.226 | t(646.622) = −3.715, p < 0.001, d = −0.275 | |||||
Habitat value | Actual | 250 | 5.66 | 1.26 | 316 | 4.40 | 1.83 |
Assumed | 526 | 5.57 | 1.36 | 460 | 4.20 | 1.61 | |
t-test statistics | t(774) = −0.878, p = 0.380 | t(618.501) = −1.620, p = 0.106 | |||||
Water quality improvement | Actual | 249 | 4.61 | 1.56 | 314 | 4.81 | 1.51 |
Assumed | 528 | 5.31 | 1.35 | 460 | 4.68 | 1.41 | |
t-test statistics | t(429.142) = 6.046, p < 0.001, d = 0.489 | t(772) = −1.278, p = 0.201 | |||||
Greenspace provision | Actual | 251 | 5.42 | 1.40 | 314 | 5.51 | 1.26 |
Assumed | 529 | 5.44 | 1.31 | 464 | 5.20 | 1.38 | |
t-test statistics | t(778) = 0.197, p = 0.844 | t(776) = −3.196, p = 0.001, d = −0.234 | |||||
Enhanced neighborhood aesthetics | Actual | 248 | 5.29 | 1.57 | 315 | 5.38 | 1.33 |
Assumed | 527 | 5.38 | 1.53 | 462 | 5.25 | 1.40 | |
t-test statistics | t(773) = 0. 720, p = 0.472 | t(775) = −1.349, p = 0.178 | |||||
Promotion of water environment awareness | Actual | 249 | 4.94 | 1.57 | 314 | 4.81 | 1.63 |
Assumed | 527 | 4.58 | 1.57 | 461 | 4.18 | 1.52 | |
t-test statistics | t(774) = −2.960, p = 0.003, d = −0.228 | t(642.951) = −5.429, p < 0.001, d = −0.402 | |||||
Noise reduction | Actual | 248 | 4.05 | 1.71 | 315 | 4.23 | 1.77 |
Assumed | 521 | 4.29 | 1.60 | 459 | 3.82 | 1.55 | |
t-test statistics | t(767) = 1.864, p = 0.063 | t(615.180) = −3.322, p = 0.001, d = −0.249 | |||||
Enhanced neighborhood vitality | Actual | 249 | 4.65 | 1.59 | 316 | 4.89 | 1.50 |
Assumed | 527 | 5.15 | 1.45 | 461 | 4.88 | 1.42 | |
t-test statistics | t(448.614) = 4.167, p < 0.001, d = 0.331 | t(775) = −0.121, p = 0.903 | |||||
Recreation value | Actual | 250 | 4.53 | 1.56 | 316 | 4.78 | 1.58 |
Assumed | 526 | 4.45 | 1.50 | 462 | 4.45 | 1.47 | |
t-test statistics | t(774) = −0.662, p = 0.508 | t(642.693) = −2.933, p = 0.003, d = −0.217 | |||||
Health value | Actual | 250 | 4.57 | 1.59 | 316 | 4.67 | 1.63 |
Assumed | 528 | 4.88 | 1.42 | 462 | 4.48 | 1.40 | |
t-test statistics | t(443.272) = 2.571, p = 0.010, d = 0.205 | t(607.645) = −1.688, p = 0.092 | |||||
Promotion of reflection on people–water relationship | Actual | 250 | 4.73 | 1.62 | 316 | 4.81 | 1.67 |
Assumed | 527 | 4.59 | 1.54 | 459 | 4.07 | 1.56 | |
t-test statistics | t(775) = −1.181, p = 0.238 | t(648.295) = −6.282, p < 0.001, d = −0.465 | |||||
Increased property value | Actual | 250 | 4.77 | 1.55 | 316 | 5.00 | 1.45 |
Assumed | 527 | 4.95 | 1.43 | 461 | 4.74 | 1.40 | |
t-test statistics | t(453.424) = 1.568, p = 0.117 | t(775) = −2.521, p = 0.012, d = −0.184 |
Concern | Group | Biodiverse Swales | Turf Swales | ||||
---|---|---|---|---|---|---|---|
N | Mean | S.D. | N | Mean | S.D. | ||
Pests | Actual | 249 | 2.93 * | 1.295 | 316 | 2.97 | 1.400 |
Assumed | 525 | 3.41 | 1.205 | 459 | 2.83 | 1.326 | |
t-test statistics | t(772) = 5.069, p < 0.001, d = 0.390 | t(773) = −1.395, p = 0.164, d = −0.102 | |||||
Unappealing appearance | Actual | 248 | 3.02 | 1.316 | 315 | 2.95 | 1.360 |
Assumed | 525 | 3.31 | 1.225 | 458 | 2.80 | 1.310 | |
t-test statistics | t(771) = 3.063, p = 0.002, d = 0.236 | t(771) = −1.496, p = 0.135, d = −0.109 | |||||
Health concerns about pollutants | Actual | 250 | 2.68 | 1.303 | 315 | 2.91 † | 1.429 |
Assumed | 522 | 2.98 | 1.342 | 458 | 2.71 | 1.343 | |
t-test statistics | t(770) = 2.999, p = 0.003, d = 0.231 | t(771) = −1.975, p = 0.049, d = −0.145 | |||||
Inadequacy treating stormwater | Actual | 249 | 2.69 | 1.300 | 314 | 2.91 | 1.342 |
Assumed | 519 | 2.90 | 1.278 | 456 | 2.74 | 1.270 | |
t-test statistics | t(766) = 2.091, p = 0.037, d = 0.161 | t(768) = −1.780, p = 0.076, d = −0.131 | |||||
Maintenance burden | Actual | 251 | 2.48 | 1.369 | 316 | 2.76 | 1.486 |
Assumed | 527 | 2.84 | 1.290 | 461 | 2.62 | 1.279 | |
t-test statistics | t(466.450) = 3.554, p < 0.001, d = 0.278 | t(608.811) = −1.386, p = 0.166, d = −0.104 | |||||
Children’s safety | Actual | 248 | 2.48 | 1.365 | 315 | 2.77 | 1.518 |
Assumed | 518 | 2.81 | 1.429 | 456 | 2.45 | 1.399 | |
t-test statistics | t(764) = 2.990, p = 0.003, d = 0.231 | t(638.859) = −3.008, p = 0.003, d = −0.224 | |||||
Loss of parking | Actual | 248 | 2.54 | 1.390 | 310 | 2.72 | 1.414 |
Assumed | 521 | 2.72 | 1.401 | 458 | 2.58 | 1.370 | |
t-test statistics | t(767) = 1.627, p = 0.104, d = 0.125 | t(766) = −1.432, p = 0.153, d = −0.105 | |||||
Home value decrease | Actual | 250 | 2.48 | 1.471 | 315 | 2.58 | 1.470 |
Assumed | 523 | 2.64 | 1.421 | 458 | 2.37 | 1.388 | |
t-test statistics | t(771) = 0.240, p = 0.152, d = 0.110 | t(649.378) = −2.015, p = 0.044, d = −0.149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Hoffman, M.C.; Wang, R.; Kelley, K.M.; Adib, M. Revealing Public Perceptions of Biodiverse vs. Turf Swales: Balancing Enhanced Ecosystem Services with Heightened Concerns. Water 2024, 16, 2899. https://doi.org/10.3390/w16202899
Wu H, Hoffman MC, Wang R, Kelley KM, Adib M. Revealing Public Perceptions of Biodiverse vs. Turf Swales: Balancing Enhanced Ecosystem Services with Heightened Concerns. Water. 2024; 16(20):2899. https://doi.org/10.3390/w16202899
Chicago/Turabian StyleWu, Hong, Margaret C. Hoffman, Rui Wang, Kathleen M. Kelley, and Mahsa Adib. 2024. "Revealing Public Perceptions of Biodiverse vs. Turf Swales: Balancing Enhanced Ecosystem Services with Heightened Concerns" Water 16, no. 20: 2899. https://doi.org/10.3390/w16202899
APA StyleWu, H., Hoffman, M. C., Wang, R., Kelley, K. M., & Adib, M. (2024). Revealing Public Perceptions of Biodiverse vs. Turf Swales: Balancing Enhanced Ecosystem Services with Heightened Concerns. Water, 16(20), 2899. https://doi.org/10.3390/w16202899