Modified Lignocellulosic Waste for the Amelioration of Water Quality: Adsorptive Removal of Congo Red and Nitrate Using Modified Poplar Sawdust
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.1.1. Modification of Lignocellulose Material
2.1.2. Test Model Pollutants
2.1.3. Characterisation
2.1.4. Batch Adsorption Experiments
2.1.5. Adsorption Data Modelling
2.1.6. Desorption Experiments
3. Results and Discussion
3.1. Characterisation of the Adsorbent
3.2. Batch Adsorption Studies
3.3. Isotherm and Kinetic Modelling of the Experimental Adsorption Data
3.4. Adsorption Capacities of Poplar Sawdust-Based Sorbents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radoor, S.; Karayil, J.; Parameswaranpillai, J.; Siengchin, S. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Sci. Rep. 2020, 10, 15452. [Google Scholar] [CrossRef]
- Pielesz, A. The process of the reduction of azo dyes used in dyeing textiles on the basis of infrared spectroscopy analysis. J. Mol. Struct. 1999, 511–512, 337–344. [Google Scholar] [CrossRef]
- Jalandoni-Buan, A.C.; Decena-Soliven, A.L.A.; Cao, E.P.; Barraquio, V.L.; Barraquio, W.L. Characterization and identification of Congo red decolorizing bacteria from monocultures and consortia. Philipp. J. Sci. 2010, 139, 71–78. [Google Scholar]
- Stjepanović, M.; Velić, N.; Habuda-Stanić, M. Modified Hazelnut Shells as a Novel Adsorbent for the Removal of Nitrate from Wastewater. Water 2022, 14, 816. [Google Scholar] [CrossRef]
- Bagherifam, S.; Komarneni, S.; Lakzian, A.; Fotovat, A.; Khorasani, R.; Huang, W.; Ma, J.; Hong, S.; Cannon, F.S.; Wang, Y. Highly selective removal of nitrate and perchlorate by organoclay. Appl. Clay Sci. 2014, 95, 126–132. [Google Scholar] [CrossRef]
- Hekmatzadeh, A.A.; Karimi-Jashni, A.; Talebbeydokhti, N.; Kløve, B. Adsorption kinetics of nitrate ions on ion exchange resin. Desalination 2013, 326, 125–134. [Google Scholar] [CrossRef]
- Schoeman, J.J.; Steyn, A. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 2003, 155, 15–26. [Google Scholar] [CrossRef]
- Bi, J.; Peng, C.; Xu, H.; Ahmed, A.-S. Removal of nitrate from groundwater using the technology of electrodialysis and electrodeionization. Desalin. Water Treat. 2011, 34, 394–401. [Google Scholar] [CrossRef]
- Seliem, M.K.; Komarneni, S.; Byrne, T.; Cannon, F.S.; Shahien, M.G.; Khalil, A.A.; Abd El-Gaid, I.M. Removal of nitrate by synthetic organosilicas and organoclay: Kinetic and isotherm studies. Sep. Purif. Technol. 2013, 110, 181–187. [Google Scholar] [CrossRef]
- Mc Kay, G.; Blair, H.S.; Gardner, J. Rate studies for the adsorption of dyestuffs onto chitin. J. Colloid Interface Sci. 1983, 95, 108–119. [Google Scholar] [CrossRef]
- Namasivayam, C.; Jeyakumar, R.; Yamuna, R.T. Dye removal from wastewater by adsorption on “waste” Fe(III)/Cr(III) hydroxide. Waste Manag. 1994, 14, 643–648. [Google Scholar] [CrossRef]
- Juang, R.S.; Tseng, R.L.; Wu, F.C.; Lee, S.H. Adsorption behavior of reactive dyes from aqueous solutions on chitosan. J. Chem. Technol. Biotechnol. 1997, 70, 391–399. [Google Scholar] [CrossRef]
- McKay, G. Analytical solution using a pore diffusion model for a pseudoirreversible isotherm for the adsorption of basic dye on silica. AIChE J. 1984, 30, 692–697. [Google Scholar] [CrossRef]
- Stjepanović, M.; Velić, N.; Lončarić, A.; Gašo-Sokač, D.; Bušić, V.; Habuda-Stanić, M. Adsorptive removal of nitrate from wastewater using modified lignocellulosic waste material. J. Mol. Liq. 2019, 285, 535–544. [Google Scholar] [CrossRef]
- Stjepanović, M.; Velić, N.; Galić, A.; Kosović, I.; Jakovljević, T.; Habuda-Stanić, M. From waste to biosorbent: Removal of congo red from water by waste wood biomass. Water 2021, 13, 279. [Google Scholar] [CrossRef]
- Demcak, S.; Balintova, M.; Hurakova, M.; Frontasyeva, M.V.; Zinicovscaia, I.; Yushin, N. Utilization of poplar wood sawdust for heavy metals removal from model solutions. Nov. Biotechnol. Chim. 2017, 16, 26–31. [Google Scholar] [CrossRef]
- Keränen, A.; Leiviskä, T.; Gao, B.Y.; Hormi, O.; Tanskanen, J. Preparation of novel anion exchangers from pine sawdust and bark, spruce bark, birch bark and peat for the removal of nitrate. Chem. Eng. Sci. 2013, 98, 59–68. [Google Scholar] [CrossRef]
- Stevanović, G.; Jović-Jovičić, N.; Krstić, J.; Milutinović-Nikolić, A.; Banković, P.; Popović, A.; Ajduković, M. Nanocomposite Co-catalysts, based on smectite and biowaste-derived carbon, as peroxymonosulfate activators in degradation of tartrazine. Appl. Clay Sci. 2022, 230, 106718. [Google Scholar] [CrossRef]
- Kalmár, J.; Kéri, M.; Erdei, Z.; Bányai, I.; Lázár, I.; Lente, G.; Fábián, I. The pore network and the adsorption characteristics of mesoporous silica aerogel: Adsorption kinetics on a timescale of seconds. RSC Adv. 2015, 5, 107237–107246. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 2, 31–60. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. The sorption of lead(II) ions on peat. Water Res. 1999, 33, 578–584. [Google Scholar] [CrossRef]
- Plazinski, W.; Rudzinski, W.; Plazinska, A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci. 2009, 152, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, J.; Shi, X.; Tang, H.; Wang, X.; Wang, S.; Zhang, W.; Lu, J. Preferential Nitrate Removal from Water Using a New Recyclable Polystyrene Adsorbent Functionalized with Triethylamine Groups. Ind. Eng. Chem. Res. 2020, 59, 5194–5201. [Google Scholar] [CrossRef]
- Keränen, A.; Leiviskä, T.; Hormi, O.; Tanskanen, J. Preparation of cationized pine sawdust for nitrate removal: Optimization of reaction conditions. J. Environ. Manag. 2015, 160, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Y.; Wang, J.; Xu, S.; Yu, L.; Philippe, C.; Wintgens, T. Nitrate removal from water by new polymeric adsorbent modified with amino and quaternary ammonium groups: Batch and column adsorption study. J. Taiwan Inst. Chem. Eng. 2016, 66, 191–199. [Google Scholar] [CrossRef]
- Banu, H.T.; Meenakshi, S. Synthesis of a novel quaternized form of melamine–formaldehyde resin for the removal of nitrate from water. J. Water Process Eng. 2017, 16, 81–89. [Google Scholar] [CrossRef]
- Emeruwa, E.; Jarrige, J.; Mexmain, J.; Bernardin, M. Application of mercury porosimetry to powder (UO2) analysis. J. Nucl. Mater. 1991, 184, 53–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, K.; Yang, Z.; Ye, G. A reappraisal of the ink-bottle effect and pore structure of cementitious materials using intrusion-extrusion cyclic mercury porosimetry. Cem. Concr. Res. 2022, 161, 106942. [Google Scholar] [CrossRef]
- Argalis, P.P.; Sinka, M.; Bajare, D. Recycling of Cement–Wood Board Production Waste into a Low-Strength Cementitious Binder. Recycling 2022, 7, 76. [Google Scholar] [CrossRef]
- Bulut, Y.; Aydin, H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 2006, 194, 259–267. [Google Scholar] [CrossRef]
- Hameed, B.H.; Ahmad, A.A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 2009, 164, 870–875. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Harja, M.; Buema, G.; Bucur, D. Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 2022, 12, 6087. [Google Scholar] [CrossRef] [PubMed]
- Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Sci. Rep. 2019, 9, 16530. [Google Scholar] [CrossRef] [PubMed]
- Dbik, A.; Bentahar, S.; El Khomri, M.; El Messaoudi, N.; Lacherai, A. Adsorption of Congo red dye from aqueous solutions using tunics of the corm of the saffron. Mater. Today Proc. 2020, 22, 134–139. [Google Scholar] [CrossRef]
- Wanyonyi, W.C.; Onyari, J.M.; Shiundu, P.M. Adsorption of congo red dye from aqueous solutions using roots of eichhornia crassipes: Kinetic and equilibrium studies. Energy Procedia 2014, 50, 862–869. [Google Scholar] [CrossRef]
- Gupta, V.; Nayak, A.; Bhushan, B.; Kumar, V. Assessment of Biosorption Potential of Poplar Sawdust for Removal of Dyes from Wastewater under Single and Binary System. Int. J. Recent Technol. Eng. 2020, 8, 24–33. [Google Scholar] [CrossRef]
- Kezerle, A.; Velić, N.; Hasenay, D.; Kovačević, D. Lignocellulosic Materials as Dye Adsorbents: Adsorption of Methylene Blue and Congo Red on Brewers’ Spent Grain. Croat. Chem. Acta 2018, 91, 53–64. [Google Scholar] [CrossRef]
- Velić, N.; Stjepanović, M.; Begović, L.; Habuda-Stanić, M.; Velić, D.; Jakovljević, T. Valorisation of waste wood biomass as biosorbent for the removal of synthetic dye methylene blue from aqueous solutions. South-East Eur. For. 2018, 9, 115–122. [Google Scholar] [CrossRef]
- Qin, X.; Zeng, X.; Cheng, S.; Xing, B.; Jiang, D.; Zhao, S.; Shi, C.; Zhang, Z.; Wang, Q.; Zhang, C. Preparation and evaluation of poplar waste derived adsorbent for dye removal. Arab. J. Chem. 2023, 16, 104913. [Google Scholar] [CrossRef]
- Yıldız, D.; Demir, I.; Demiral, H. Adsorption of malachite green on to poplar sawdust activated carbon. Sep. Sci. Technol. 2023, 58, 2099–2114. [Google Scholar] [CrossRef]
- Chen, A.; Wang, N.; Tian, Z.; Wei, X.; Lei, C. One-step synthesis of readily recyclable poplar sawdust-based porous carbon for the adsorption of tetracycline. Ind. Crops Prod. 2023, 197, 116621. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Sharma, P.K.; Gupta, V. Development of Magnetic Nanoparticles from Poplar Sawdust for Removal of Pesticides from Aqueous Solution. J. Graph. Era Univ. 2018, 6, 55–70. [Google Scholar]
- Acar, F.N.; Eren, Z. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mater. 2006, 137, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Šćiban, M.; Klašnja, M.; Škrbić, B. Modified softwood sawdust as adsorbent of heavy metal ions from water. J. Hazard. Mater. 2006, 136, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Božić, D.; Stanković, V.; Gorgievski, M.; Bogdanović, G.; Kovačević, R. Adsorption of heavy metal ions by sawdust of deciduous trees. J. Hazard. Mater. 2009, 171, 684–692. [Google Scholar] [CrossRef]
- Kovacova, Z.; Demcak, S.; Balintova, M.; Pla, C.; Zinicovscaia, I. Influence of wooden sawdust treatments on Cu(II) and Zn(II) removal from water. Materials 2020, 13, 3575. [Google Scholar] [CrossRef]
- Lubis, L.H.; Husin, A.; Masyitah, Z. Nitrate (NO3−) removal from wastewater by adsorption using modified kaolin. IOP Conf. Ser. Earth Environ. Sci. 2022, 963, 012038. [Google Scholar] [CrossRef]
- Revilla, P.N.D.; Concepcion Maguyon-Detras, M.; Migo, V.P.; Alfafara, C.G. Nitrate removal from aqueous solution by adsorption using municipal solid waste-derived activated biochar. IOP Conf. Ser. Mater. Sci. Eng. 2020, 778, 012135. [Google Scholar] [CrossRef]
- Battas, A.; El Gaidoumi, A.; Ksakas, A.; Kherbeche, A. Adsorption study for the removal of nitrate from water using local clay. Sci. World J. 2019, 2019, 9529618. [Google Scholar] [CrossRef] [PubMed]
T = 25 °C The Effect of the Adsorption Parameters | Biosorbent Concentration, γ (g·dm−3) | Adsorbate Concentration, γ (mg·dm−3) | pH | Contact Time (min) |
---|---|---|---|---|
Adsorption of CR | ||||
Biosorbent con. | 1, 2, 3, 4, 6 and 8 | 50 | Native (7.9) | 180 |
Contact time | 3 | 50 | Native (7.9) | 1–240 |
Initial adsorbate con. | 3 | 25–250 | Native (7.9) | 180 |
Effect of pH | 3 | 50 | 2–12 | 180 |
Adsorption of NO3− | ||||
Biosorbent con. | 1, 2, 4, 6, and 8 | 100 | Native (6.69) | 180 |
Contact time | 4 | 100 | Native (6.69) | 1–240 |
Initial adsorbate con. | 4 | 25–200 | Native (6.69) | 180 |
Effect of pH | 4 | 100 | 2–12 | 180 |
PWS | mPWS | |
---|---|---|
Element | Wt% | Wt% |
C | 51.50 | 58.91 |
O | 39.17 | 13.10 |
N | - | 14.84 |
Ca | 9.33 | 0.00 |
Cu | 0.00 | - |
Cl | - | 13.15 |
Total: | 100.00 | 100.00 |
Sample | Run | a Vtot (mm3·g−1) | b SHg (m2·g−1) | c Dav (μm) | d BD (g·cm−3) | e P (%) |
---|---|---|---|---|---|---|
mPWS | I | 106.30 | 9.4 | 6.77 | 1.26 | 13.39 |
111.91 | 9.9 | 7.07 | 1.33 | 14.13 | ||
112.14 | 9.9 | 7.13 | 1.42 | 14.21 | ||
II | 49.36 | 2.56 | 8.33 | 1.26 | 6.21 | |
51.45 | 2.67 | 8.69 | 1.31 | 6.47 | ||
51.12 | 2.65 | 8.66 | 1.30 | 6.62 |
mPWB | Adsorbates | |
---|---|---|
CR | NO3− | |
qeexp (mg·g−1) | 14.13 | 21.54 |
Freundlich equation | ||
KF (mg·g−1·(dm3·mg−1)1/n) | 12.247 | 9.421 |
n | 2.65 | 2.61 |
R2 | 0.955 | 0.963 |
X2 | 21.162 | 2.672 |
Langmuir equation | ||
qmax (mg·g−1) | 70.3 | 43.6 |
KL (dm3 mg−1) | 0.069 | 0.124 |
RL | 0.367 | 0.244 |
R2 | 0.960 | 0.928 |
X2 | 19.2 | 13.0 |
Pseudo-first-order kinetic model | ||
qe calc (mg·g−1) | 13.05 | 20.96 |
k1/min−1 | 0.088 | 0.121 |
R2 | 0.971 | 0.932 |
Pseudo-second-order kinetic model | ||
qecalc (mg·g−1) | 14.59 | 21.85 |
k2 × 10−3 (g·mg−1min−1) | 9.40 | 9.86 |
R2 | 0.987 | 0.956 |
Intraparticle diffusion model, 1st linear plot | ||
k1 (mg·g−1 min−1/2) | 2.12 | 2.77 |
Cid1 | 0.50 | 4.60 |
R12 | 0.960 | 0.902 |
Intraparticle diffusion model, 2nd linear plot | ||
k2/mg·g−1 min−2 | 0.146 | 0.071 |
R22 | 0.986 | 0.605 |
Adsorbent | Adsorbate | Modifying Agents | Adsorption Capacity (mg·g−1) | Reference |
---|---|---|---|---|
Fly ash | Congo red | - | 22.12 | [34] |
Poplar sawdust | Congo red | - | 8 | [15] |
Pine bark | Congo red | - | 3.92 | [35] |
Tunics of the corm of the saffron | Congo red | - | 6.2 | [36] |
Roots of Eichhornia crassipes | Congo red | - | 5.28 | [37] |
Poplar sawdust | Methylene blue Congo red | - - | 23.8 19.6 | [38] |
Brewers’ spent grain | Methylene blue Congo red | - | 37.45 19.65 | [39] |
Poplar sawdust | Methylene blue | - | 42.37 | [40] |
Poplar sawdust | Methylene blue | Na2CO3 | 254.21 | [41] |
Poplar sawdust | Malachite green | Carbonization + H3PO4 | 150 | [42] |
Poplar sawdust | Tetracycline | KHCO3, FeCl3 · 6H2O + high-temperature carbonization | 288.2 | [43] |
Poplar sawdust | Methoxychlor Methylparathion | FeCl3 · 6H2O, FeSO4 · 7H2O, NH4OH | 163.9 77.5 | [44] |
Poplar sawdust | Cu(II) | H2SO4 | 13.95 | [45] |
Poplar sawdust | Cu(II) | NaOH | 6.92 | [46] |
Cd Cu Mn Ni Zn | - - - - - | 3.5 9.9 1.0 4.6 2.17 | [47] | |
Poplar sawdust | Cu(II) | - NaOH KOH | 3.97 8.20 7.86 | [48] |
Poplar sawdust | Cu(II) | - NaOH KOH | 2.69 6.34 5.73 | [48] |
Kaolin | NO3− | Cetyltrimethylammonium bromide (CTABr) | 0.813 | [49] |
Municipal solid waste-derived activated biochar | NO3− | pyrolisis | 2.11 | [50] |
Greenish clay | NO3− | - | 27.77 | [51] |
Pine sawdust | N-NO3− | N,N-dimethylformamide, Epichlorohydrin, ethylenediamine, triethylamine | 29.5 | [25] |
Brewers’ spent grain | N-NO3− | N,N-dimethylformamide, Epichlorohydrin, ethylenediamine, triethylamine | 25.97 | [14] |
Poplar sawdust | Congo red NO3− | N,N-dimethylformamide, Epichlorohydrin, ethylenediamine, triethylamine | 70.3 43.6 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velić, N.; Stjepanović, M.; Pavlović, S.; Bagherifam, S.; Banković, P.; Jović-Jovičić, N. Modified Lignocellulosic Waste for the Amelioration of Water Quality: Adsorptive Removal of Congo Red and Nitrate Using Modified Poplar Sawdust. Water 2023, 15, 3776. https://doi.org/10.3390/w15213776
Velić N, Stjepanović M, Pavlović S, Bagherifam S, Banković P, Jović-Jovičić N. Modified Lignocellulosic Waste for the Amelioration of Water Quality: Adsorptive Removal of Congo Red and Nitrate Using Modified Poplar Sawdust. Water. 2023; 15(21):3776. https://doi.org/10.3390/w15213776
Chicago/Turabian StyleVelić, Natalija, Marija Stjepanović, Stefan Pavlović, Saeed Bagherifam, Predrag Banković, and Nataša Jović-Jovičić. 2023. "Modified Lignocellulosic Waste for the Amelioration of Water Quality: Adsorptive Removal of Congo Red and Nitrate Using Modified Poplar Sawdust" Water 15, no. 21: 3776. https://doi.org/10.3390/w15213776