Size-Pattern and Larval-Length–Mass Relationships for the Most Common Chironomid Taxa in the Deep Subalpine Lake Maggiore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area and Sampling Strategy
2.2. Data Analysis
3. Results
3.1. Diversity-Based Approach
3.2. Biological Traits of Chironomid Assemblages
3.3. Length–Weight Relationships of Chironomid Larvae and Regression Analyses
4. Discussion
5. Conclusions
- Our findings on the lengths and body-mass relationships of 28 taxa (genus/species) of chironomid larvae confirmed the significant potential of linear body measurements in the prediction of their biomass.
- Furthermore, this first collection of trait data on summer–autumn chironomid assemblages in a temperate subalpine lake is a valuable contribution to the European trait-information database.
- The regression length–mass models predicting the dry masses of several common larvae in the summer–autumn chironomid assemblages in a deep and temperate lake could be tested on similar types of lake.
- Finally, our results on the chironomid dry–wet-weight ratio are consistent with previously published data and support the potential application of these relationships (at both the species and the higher-taxon-rank level) in different lake types.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armitage, P.; Cranston, P.S.; Pinder, L.C.V. The Chironomidae: The Biology and Ecology of Non-Biting Midges; Chapman & Hall: London, UK, 1995; p. 572. [Google Scholar]
- Cobo, F.; Blasco-Zumeta, J. Quironómidos (Diptera: Chironomidae) de la estepa subdesértica de los Monegros (Zaragoza, España). Zapateri Rev. Aragonesa Entomol. 2001, 9, 43–47. [Google Scholar]
- Serra, S.R.Q.; Cobo, F.; Graça, M.A.S.; Dolédec, S.; Feio, M.J. Synthesising the trait information of European Chironomidae (Insecta: Diptera): Towards a new database. Ecol. Indic. 2016, 61, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Belle, S.; Goedkoop, W. Functional diversity of chironomid communities in subarctic lakes across gradients in temperature and catchment characteristics. Limnology 2021, 22, 5–16. [Google Scholar] [CrossRef]
- Marshall, S.A. Flies: The Natural History & Diversity of Diptera; Firefly Books: Richmond Hill, ON, USA, 2012; p. 616. [Google Scholar]
- De Jong, Y.; Verbeek, M.; Michelsen, V.; de Place Bjørn, P.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea—All European animal species on the web. Biodivers. Data J. 2012, 2, e4034. [Google Scholar] [CrossRef] [Green Version]
- Saether, O.A. Chironomid communities as water quality indicators. Ecography 1979, 2, 65–74. [Google Scholar] [CrossRef]
- Bazzanti, M. Ecological Requirements of Chironomids (Diptera: Chironomidae) on the Soft Bottom of the River Arrone. Central Italy. J. Freshw. Ecol. 2000, 15, 397–409. [Google Scholar] [CrossRef]
- Callisto, M.; Moreno, P.; Leal, J.J.F.; Esteves, F. Diversity and biomass of Chironomidae (Diptera) larvae in an impacted coastal lagoon in Rio de Janeiro. Braz. J. Biol. 2002, 62, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Ferrington, L.; Berg, C.M., Jr.; Coffman, W.P. Chironomidae. In An Introduction to the Aquatic Insects of North America; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall Hunt: Dubuque, IA, USA, 2008; pp. 847–989. [Google Scholar]
- Luoto, T.P. The relationship between water quality and chironomid distribution in Finland—A new assemblage-based tool for assessments of long-term nutrient dynamics. Ecol. Indic. 2011, 11, 255–262. [Google Scholar] [CrossRef]
- Molozzi, J.; Feio, M.J.; Salas, F.; Marques, J.C.; Callisto, M. Development and test of a statistical model for the ecological assessment of tropical reservoirs based on benthic macroinvertebrates. Ecol. Indic. 2012, 23, 155–165. [Google Scholar] [CrossRef]
- Eggermont, H.; Heiri, O. The chironomid-temperature relationship: Expression in nature and palaeoenvironmental implications. Biol. Rev. 2012, 87, 430–456. [Google Scholar] [CrossRef]
- Kamburska, L.; Zaupa, S.; Paganelli, D.; Boggero, A. Size structure and body mass of Chironomid larvae under different water level management in the temperate deep subalpine Lake Maggiore (NW Italy); Abstract Book. In Proceedings of the XXV Congresso AIOL, Online, 30 June–2 July 2021; p. 76. Available online: http://www.aiol.info/wp-content/uploads/ABSTRACT-BOOK_final.pdf (accessed on 20 January 2023).
- Boggero, A.; Kamburska, L.; Zaupa, S.; Ciampittiello, M.; Paganelli, D.; Cifoni, M.; Rogora, M.; Di Lorenzo, T. Sampling and Laboratory Protocols to Study the Effects of Water-Level Management on the Littoral Invertebrate Fauna in Deep and Large Temperate Lakes. J. Limnol. 2022, 81, 2073. [Google Scholar] [CrossRef]
- Nicacio, G.; Juen, L. Chironomids as indicators in freshwater ecosystems: An assessment of the literature. Insect Conserv. Divers. 2015, 8, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, A.; Paaby, P.; Pringle, C.M.; Aguero, G. Effect of habitat type on benthic macroinvertebrates in two lowland tropical streams, Costa Rica. Rev. Biol. Trop. 1998, 46, 201–213. [Google Scholar]
- Wagner, A.; Volkmann, S.; Dettinger-Klemm, P.M.A. Benthic–pelagic coupling in lake ecosystems: The key role of chironomid pupae as prey of pelagic fish. Ecosphere 2012, 3, 14. [Google Scholar] [CrossRef]
- Grzybkowska, M.; Dukowska, M.; Leszczyńska, J.; Lik, J.; Szczerkowska Majchrzak, E.; Przybylski, M. The food resources exploitation by small-sized fish in a riverine macrophyte habitat. Ecol. Indic. 2018, 90, 206–214. [Google Scholar] [CrossRef]
- Seminara, M.; Bazzanti, M.; Tamorri, C. Sublittoral and profundal chironomid (Diptera) communities of Lake Vico (Central Italy): Relationship to the trophic level. Ann. Limnol. 1990, 26, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Callisto, M.; Serpa-Filho, A.; De Oliveira, S.J.; Esteves, F.A. Chironomids on leaves of Typha domingensis in a lagoon of Rio de Janeiro State (Brazil). Stud. Neotrop. Fauna Environ. 1996, 31, 51–53. [Google Scholar] [CrossRef]
- Van den Berg, M.S.; Coops, H.R.; Noordhuis, R.; Van Schie, J.; Simons, J. Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes. Hydrobiologia 1997, 342–343, 143–150. [Google Scholar] [CrossRef]
- Zanden, H.B.V.; Soto, D.X.; Bowen, G.J.; Hobson, K.A. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies. Front. Ecol. Evol. 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Serra, S.R.Q.; Graça, M.A.S.; Dolédec, S.; Feio, M.J. Chironomidae of the Holarctic region: A comparison of ecological and functional traits between North America and Europe. Hydrobiologia 2017, 794, 273–285. [Google Scholar] [CrossRef]
- Berg, H.B. Larval food and feeding behaviour. In The Chironomidae: Biology and Ecology of Non-Biting Midges; Armitage, P.D., Cranston, P.S., Pinder, L.C.V., Eds.; Chapman & Hall: London, UK, 1995; pp. 136–168. [Google Scholar]
- Cummins, K.W. Trophic relations of aquatic insects. Annu. Rev. Entomol. 1973, 18, 183–206. [Google Scholar] [CrossRef]
- Nessimian, J.L.; Sanseverino, A.M.; Oliveira, A.L.H. Relações tróficas de larvas de Chironomidae (Diptera) e sua importância na rede alimentar em um brejo no litoral do Estado do Rio de Janeiro. Rev. Bras. Entomol. 1999, 43, 47–53. [Google Scholar]
- Henriques-Oliveira, A.L.; Nessimian, J.L.; Dorvillè, L.F.M. Feeding habits of Chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Braz. J. Biol. 2003, 63, 269–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetzel, R.G. Limnology, 3rd ed.; Academic Press Elsevier: San Diego, CA, USA, 2001. [Google Scholar]
- Salmaso, N.; Mosello, R. Limnological research in the deep southern subalpine lakes: Synthesis. directions and perspectives. Adv. Oceanogr. Limnol. 2010, 1, 29–66. [Google Scholar] [CrossRef]
- Ricciardi, A.; Bourget, E. Weight-to-weight conversion factors for marine benthic macroinvertebrates. Mar. Ecol. Prog. Ser. 1998, 163, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Benke, A.C.; Huryn, A.D.; Smock, A.L.; Wallace, J.B. Length-Mass Relationships for Freshwater Macroinvertebrates in North America with Particular Reference to the Southeastern United States. J. N. Am. Benthol. Soc. 1999, 18, 308–343. [Google Scholar] [CrossRef] [Green Version]
- Smock, L.A. Relationships between body size and biomass of aquatic insects. Freshw. Biol. 1980, 10, 375–383. [Google Scholar] [CrossRef]
- Burgherr, P.; Meyer, E.I. Regression analysis of linear body dimensions vs. dry mass in stream macroinvertebrates. Arch. Hydrobiol. 1997, 139, 101–112. [Google Scholar] [CrossRef]
- Meyer, E. The relationship between body length parameters and dry mass in running water invertebrates. Arch. Hydrobiol. 1989, 117, 191–203. [Google Scholar] [CrossRef]
- Wenzel, F.; Meyer, E.; Schwoerbel, J. Morphometryand biomass determination of dominant mayfly larvae (Ephemeroptera) in running waters. Arch. Hydrobiol. 1990, 118, 31–46. [Google Scholar] [CrossRef]
- Johnston, T.; Cunjak, R.A. Dry mass-length relationships for benthic insects: A review with new data from Catamaran Brook. New Brunswick. Canada. Freshw. Biol. 1999, 41, 653–674. [Google Scholar] [CrossRef] [Green Version]
- Ferrarese, U.; Rossaro, B. Chironomidi 1 (Diptera Chironomidae: Generalità, Diamesinae, Prodiamesinae). In Guide per il Riconoscimento Delle Specie Animali Delle Acque Interne Italiane; Ruffo, S., Ed.; Consiglio Nazionale delle Ricerche AQ: Verona, Italy, 1981; pp. 12–97. [Google Scholar]
- Rossaro, B.; Pirola, N.; Marziali, L.; Magoga, G.; Boggero, A.; Montagna, M. An updated list of chironomid species from Italy with biogeographic considerations (Diptera. Chironomidae). Biogeogr. J. Integr. Biogeogr. 2019, 34. [Google Scholar] [CrossRef] [Green Version]
- Reiss, F. Verbreitung lakustrischer Chironomiden (Diptera) des Alpengebietes. Ann. Zool. Fenn. 1968, 5, 119–125. [Google Scholar]
- Laville, H.; Serra-Tosio, B. Additions et corrections à l’inventaire des Chironomidés (Diptera) de France depuis 1990. Ann. Limno. 1996, 32, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Nocentini, A. Chironomidi, 4 (Diptera, Chironomidae: Chironominae, larve). In Guide per il Riconoscimento Delle Specie Animali Delle Acque Interne Italiane; Ruffo, S., Ed.; Consiglio Nazionale delle Ricerche AQ/1/129: Verona, Italy, 1985; Volume 29, pp. 1–186. [Google Scholar]
- Rossaro, B. Chironomidi, 2 (Diptera, Chironomidae, Orthocladiinae). In Guide per il Riconoscimento Delle Specie Animali Delle Acque Interne Italiane; Ruffo, S., Ed.; Consiglio Nazionale delle Ricerche AQ/1/129: Verona, Italy, 1982; Volume 16, pp. 1–80. [Google Scholar]
- Boggero, A.; Pierri, C.; Alber, R.; Austoni, M.; Barbone, E.; Bartolozzi, L.; Bertani, I.; Campanaro, A.; Cattaneo, A.; Cianferoni, F.; et al. A geographic distribution data set of biodiversity in Italian freshwaters. Biogeogr. J. Integr. Biogeogr. 2016, 31, 55–72. [Google Scholar] [CrossRef]
- Rossaro, B.; Magoga, G.; Montagna, M. Revision of the genus Chaetocladius Kieffer (Diptera, Chironomidae). 1st note: Description of four new species from Italy. J. Entomol. Acar. Res. 2017, 49, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Rogora, M.; Austoni, M.; Caroni, R.; Giacomotti, P.; Kamburska, L.; Marchetto, A.; Mosello, R.; Orru, A.; Tartari, G.; Dresti, C. Temporal changes in nutrients in a deep oligomictic lake: The role of external loads versus internal processes. J. Limnol. 2021, 80, 2051. [Google Scholar] [CrossRef]
- Zaupa, S.; Boggero, A.; Kamburska, L. Littoral chironomids and oligochaetes in the subalpine Lake Maggiore: A first dataset. J. Limnol. 2023, 81, 2124. [Google Scholar] [CrossRef]
- Andersen, T.; Cranston, P.S.; Epler, J.H. (Eds.) The larvae of Chironomidae (Diptera) of the Holarctic region—Keys and diagnoses. Insect Syst. Evol. Suppl. 2013, 66, 1–573. [Google Scholar]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949; p. 117. [Google Scholar]
- Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 1960, 30, 280–338. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 20 January 2023).
- Miserendino, M.L. Length-mass relationships for macroinvertebrates in freshwater environments of Patagonia (Argentina). Ecol. Austral 2001, 11, 3–8. [Google Scholar]
- Sabo, J.L.; Bastow, J.L.; Power, M.E. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J. N. Am. Benthol. Soc. 2002, 21, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Stoffels, R.J.; Karbe, S.; Paterson, R.A. Length-mass models for some common New Zealand littoral-benthic macroinvertebrates, with a note on within-taxon variability in parameter values among published models. N. Z. J. Mar. Freshw. Res. 2003, 37, 449–460. [Google Scholar] [CrossRef]
- Mährlein, M.; Pätzig, M.; Brauns, M.; Dolman, A.M. Length–mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia 2016, 768, 37–50. [Google Scholar] [CrossRef]
- Hajiesmaeili, M.; Ayyoubzadeh, S.A.; Abdoli, A. Length-Weight Relationships for the benthic invertebrates of a mountain river in the Southern Caspian Sea basin, Iran. J. Agric. Sci. Technol. 2019, 21, 1831–1841. [Google Scholar]
- Vadeboncoeur, Y.; McIntyre, P.; Vander Zanden, J. Borders of biodiversity: Life at the edge of the world’s large lakes. BioScience 2011, 61, 526–537. [Google Scholar] [CrossRef]
- Rossaro, B.; Marziali, L.; Boggero, A. Response of Chironomids to Key Environmental Factors: Perspective for Biomonitoring. Insects 2022, 13, 911. [Google Scholar] [CrossRef]
- Rossaro, B.; Marziali, L.; Montagna, M.; Magoga, G.; Zaupa, S.; Boggero, A. Factors Controlling Morphotaxa Distributions of Diptera Chironomidae in Freshwaters. Water 2022, 14, 1014. [Google Scholar] [CrossRef]
- Armitage, D.; de Loë, R.; Plummer, R. Environmental governance and its implications for conservation practice: Environmental governance. Conserv. Lett. 2012, 5, 245–255. [Google Scholar] [CrossRef]
- Salvarina, I.; Gravier, D.; Rothhaupt, K.-O. Seasonal insect emergence from three different temperate lakes. Limnologica 2017, 62, 47–56. [Google Scholar] [CrossRef]
- Moller Pillot, H.K.M. Chironomidae Larvae. Volume 2: Biology and Ecology of the Chironomini; KNNV Uitgeverij: Zeist, The Netherlands, 2009; p. 270. [Google Scholar]
- Wiederholm, T. Use of benthos in lake monitoring. J. Water Pollut. Control. Fed. 1980, 52, 537–547. [Google Scholar]
- Free, G.; Solimini, A.; Rossaro, B.; Marziali, L.; Giacchini, R.; Paracchini, B.; Ghiani, M.; Vaccaro, S.; Gawlik, B.; Fresner, R.; et al. Modelling lake macroinvertebrate species in the shallow sublittoral, relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia 2009, 633, 123–136. [Google Scholar] [CrossRef]
- Hofmann, W. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. J. Paleolimnol. 1998, 19, 55–62. [Google Scholar] [CrossRef]
- Dresti, C.; Rogora, M.; Fenocchi, A. Hypolimnetic oxygen depletion in a deep oligomictic lake under climate change. Aquat. Sci. 2023, 85, 4. [Google Scholar] [CrossRef]
- Boggero, A.; (CNR-IRSA, Verbania, Italy). Personal communication, 2023.
- Sæther, O.A.; Spies, M. Chironomidae. Fauna Europaea. In Fauna Europaea: Diptera: Nematocera. Fauna Europaea Version 2.6; Beuk, P., Pape, T., de Jong, Y.S.D.M., Eds.; Fauna Europaea Version 2.6; Available online: http://www.faunaeur.org (accessed on 20 January 2023).
- Lindegaard, C. Chironomidae (Diptera) of European Cold Springs and Factors Influencing Their Distribution. J. Kans. Entomol. 1995, 68, 108–131. [Google Scholar]
- Boggero, A.; Zaupa, S.; Musazzi, S.; Rogora, M.; Dumnicka, E.; Lami, A. Environmental factors as drivers for macroinvertebrate and diatom diversity in Alpine lakes: New insights from the Stelvio National Park (Italy). J. Limnol. 2019, 78, 147–162. [Google Scholar] [CrossRef]
- Boggero, A.; Lencioni, V. Macroinvertebrates assemblages of high altitude lakes, inlets and outlets in the southern Alps. Arch. Hydrobiol. 2006, 165, 37–61. [Google Scholar] [CrossRef]
- Carew, M.; Pettigrove, V.; Cox, R.; Hoffmann, A. The response of Chironomidae to sediment pollution and other environmental characteristics in urban wetlands. Freshw. Biol. 2007, 52, 2444–2462. [Google Scholar] [CrossRef]
- Oliver, D.R.; Roussel, M.E. Insects and Arachnids of Canada, Part 11; The genera of larval midges of Canada: Diptera, Chironomidae; Research Branch Agriculture: Ottawa, ON, Canada, 1983; p. 263. [Google Scholar]
- Epler, J.H. Identification Faunal for the Larval Chironomidae (Diptera) of North and South Carolina: A Guide to the Taxonomy of the Midges of the Southeastern United States, Including Florida; North Carolina Department of Environment and Natural Resources: Raleigh, NC, USA; St. Johns River Water Management District: Palatka, FL, USA, 2001; p. 526. [Google Scholar]
- Beattie, D.M. Distribution and production of the larval chironomid populations in Tjeukemeer. Hydrobiologia 1982, 95, 287–306. [Google Scholar] [CrossRef]
- Heinis, F.; Davids, C. Factors governing the spatial and temporal distribution of chironomid larvae in the Maarsseveen lakes with special emphasis on the role of oxygen conditions. J. Aquat. Ecol. 1993, 27, 21–34. [Google Scholar] [CrossRef]
- Marks, R.J.; Henderson, A.E. An Examination of the Larval Chironomidae (Diptera, Nematocera) in Lennymore Bay, Lough Neagh. Ir. Nat. J. 1970, 16, 328–334. [Google Scholar]
- Cifoni, M.; Boggero, A.; Rogora, M.; Ciampittiello, M.; Martinez, A.; Galassi, D.M.P.; Fiasca, B.; Di Lorenzo, T. Effects of human-induced water level fluctuations on copepod assemblages of the littoral zone of Lake Maggiore. Hydrobiologia 2022, 849, 3545–3564. [Google Scholar] [CrossRef]
- Fjellheim, A.; Håvardstun, J.; Raddum, G.G.; Schnell, Ø.A. Effects of increased discharge on benthic invertebrates in a regulated river. Regul. Rivers Res. Manag. 1993, 8, 179–187. [Google Scholar] [CrossRef]
- Ciampittiello, M.; Dresti, C.; Saidi, H.; Manca, D. Indagini sul bacino imbrifero. In Caratteristiche Idrologiche–Ricerche Sull’evoluzione del Lago Maggiore; Aspetti Limnologici; Programma Triennale 2016–2018; Campagna 2018 e Relazione Triennio 2016–2018; Commissione Internazionale per la Protezione Delle Acque Italosvizzere, CIPAIS: Torino, Italy, 2019; pp. 9–21+96–100. ISSN 1013-8099. Available online: https://www.cipais.org/web/wp-content/uploads/2023/05/S1-RM-CIPAIS_Rapporto_2018_triennio_16-18_Limnologia_Maggiore.pdf (accessed on 20 January 2023).
- Árva, D.; Specziár, A.; Erős, T.; Tóth, M. Effects of habitat types and within lake environmental gradients on the diversity of chironomid assemblages. Limnologica 2015, 53, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Baumgärtner, D.; Rothhaupt, K. Predictive Length–Dry Mass Regressions for Freshwater Invertebrates in a Pre-Alpine Lake Littoral. Int. Rev. Hydrobiol. 2003, 88, 453–463. [Google Scholar] [CrossRef]
- Rubach, M.N.; Ashauer, R.; Buchwalter, D.B.; De Lange, H.J.; Hamer, M.; Preuss, T.G.; Töpke, K.; Maund, S.J. Framework for Traits-Based Assessment in Ecotoxicology. Integr. Environ. Assess. Manag. 2011, 7, 172–186. [Google Scholar] [CrossRef]
- Nolte, U. Chironomid biomass determination from larval shape. Freshw. Biol. 1990, 24, 443–451. [Google Scholar] [CrossRef]
- Iwakuma, T.; Yasuno, M.; Sugaya, Y. Chironomid production in relation to phytoplankton primary production in Lake Kasumigaura, Japan. Verhandlungen Int. Ver. Limnol. 1984, 22, 1150–1159. [Google Scholar] [CrossRef]
- González, J.M.; Basaguren, A.; Pozo, J. Size-mass relationships of stream invertebrates in a northern Spain stream. Hydrobiologia 2002, 489, 131–137. [Google Scholar] [CrossRef]
- Towers, D.J.; Henderson, I.M.; Veltman, C.J. Predicting dry weight of New Zealand aquatic macroinvertebrates from linear dimensions. N. Z. J. Mar. Freshw. Res. 1994, 28, 159–166. [Google Scholar] [CrossRef]
- Martins, R.T.; Melo, A.S.; Goncalves, J.F., Jr.; Hamada, N. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zoologia 2014, 31, 337–342. [Google Scholar] [CrossRef] [Green Version]
Feature (Units) | Amount |
---|---|
Max depth (m) | 370 |
Perimeter (km) | 170 |
Altitude (m a.s.l.) | 194 |
Drainage basin area (km2) | 6599 |
Volume (m3 × 106) | 37,500 |
Turnover theoretical time (years) | ~4 |
Sampling Site | |||||
---|---|---|---|---|---|
Subfamily | Tribe | TAXA | Magadino (M) | Fondo Toce (FT) | Sesto Calende (SC) |
Tanypodinae | Pentaneurini | Ablabesmyia longistyla (Fittkau, 1962) | + | + | + |
Procladius sp. | + | + | + | ||
Thienemannimyia gr. * | − | + | − | ||
Prodiamesinae | Monodiamesa bathyphila (Kieffer, 1918) | + | + | − | |
Odontomesa fulva (Kieffer, 1919) * | − | + | − | ||
Prodiamesa olivacea (Meigen, 1818) * | − | + | + | ||
Orthocladiinae | Cricotopus sp. | + | + | − | |
Eukiefferiella sp. * | − | + | − | ||
Heleniella sp. * | − | + | − | ||
Heterotrissocladius marcidus (Walker, 1856) * | − | + | − | ||
Nanocladius sp. * | − | − | + | ||
Orthocladius sp. | + | + | + | ||
Parametriocnemus sp. * | − | + | − | ||
Psectrocladius sordidellus (Zetterstedt, 1838) | + | + | + | ||
Chironominae | Chironomini | Chironomus gr. thummi (Kieffer, 1911) | + | + | − |
Cryptochironomus sp. | + | + | + | ||
Demicryptochironomus vulneratus (Zetterstedt, 1838) | + | + | + | ||
Dicrotendipes nervosus (Staeger, 1839) | − | + | + | ||
Einfeldia sp.* | + | - | − | ||
Paracladopelma camptolabis (Kieffer, 1913) * | − | + | − | ||
Paralauterborniella nigrohalteralis (Malloch, 1915) * | − | + | − | ||
Phaenopsectra sp. * | − | + | − | ||
Polypedilum bicrenatum (Kieffer, 1921) | + | + | + | ||
Polypedilum nubeculosum (Meigen, 1804) | + | + | + | ||
Polypedilum scalenum (Schrank, 1803) | + | + | + | ||
Microchironomus tener (Kieffer, 1918) | + | + | + | ||
Stictochironomus pictulus (Meigen, 1830) | + | + | + | ||
Tanytarsini | Cladotanytarsus sp. | + | + | + | |
Micropsectra sp. * | + | − | − | ||
Paratanytarsus sp. | + | + | − | ||
Tanytarsus sp. | + | − | + |
Sampling Site | S | H | E(H) | n. of ind. | n. of Measured ind. |
---|---|---|---|---|---|
Magadino (M) | 19 | 1.04 | 0.35 | 3777 | 352 |
Fondo Toce (FT) | 27 | 1.06 | 0.32 | 3228 | 562 |
Sesto Calende (SC) | 16 | 1.75 | 0.63 | 408 | 283 |
7413 | 1197 |
Site | Magadino | Fondo Toce | Sesto Calende |
---|---|---|---|
Magadino | |||
Fondo Toce | 14 | ||
Sesto Calende | 9 | 15 |
HW (mm) n = 986 | HL (mm) n = 1197 | TL (mm) n = 1197 | DW (mg) n = 767 | WW (mg) n = 129 | |
---|---|---|---|---|---|
HW (mm) | 0.86 | 0.67 | 0.49 | 0.56 | |
HL (mm) | 0.76 | 0.57 | 0.59 | ||
TL (mm) | 0.86 | 0.89 | |||
DW (mg) | 0.93 | ||||
WW (mg) |
Taxon | n | max TL (mm) | max DW (mg) | R | R2 | ||
---|---|---|---|---|---|---|---|
Intercept ln (a) | Slope (b) | ||||||
Chironomidae | 766 | 13.69 | 0.72 | 0.86 | 0.74 | −7.69 | 2.68 |
Tanypodinae | 11 | 10.03 | 0.23 | 0.72 | 0.52 | −8.47 | 3.09 |
Prodiamesinae | 22 | 13.69 | 0.72 | 0.96 | 0.92 | −8.68 | 3.21 |
Monodiamesa bathyphila | 14 | 13.69 | 0.72 | 0.95 | 0.92 | −8.50 | 3.1 |
Orthocladiinae | 52 | 6.64 | 0.09 | 0.80 | 0.64 | −7.71 | 2.53 |
Psectrocladius sordidellus | 42 | 9.63 | 0.22 | 0.83 | 0.66 | −8.51 | 2.94 |
Chironominae | 688 | 12.9 | 0.64 | 0.88 | 0.77 | −7.67 | 2.64 |
Cladotanytarsus sp. | 175 | 7.45 | 0.082 | 0.63 | 0.3 | −6.21 | 1.65 |
Cryptochironomus sp. | 168 | 12.9 | 0.584 | 0.86 | 0.74 | −7.82 | 2.77 |
Demicryptochironomus vulneratus | 14 | 10.81 | 0.245 | 0.96 | 0.92 | −9.12 | 3.28 |
Polypedilum bicrenatum | 44 | 6.42 | 0.086 | 0.82 | 0.68 | −7.82 | 2.74 |
Polypedilum nubeculosum | 50 | 9.48 | 0.203 | 0.90 | 0.80 | −8.11 | 2.91 |
Stictochironomus pictulus | 223 | 12.23 | 0.64 | 0.91 | 0.83 | −7.85 | 2.88 |
Taxon | n | ln (a) | b | r2 | Range TL (mm) | Habitat | Reference |
---|---|---|---|---|---|---|---|
Diptera | 43 | −5.991 | 2.692 | streams, rivers, wetlands (USA) | [32] | ||
Chironomidae | 38 | −6.166 | 2.71 | 0.84 | 2.0 ± 6.0 | streams (Canada) | [37] |
Tanypodinae | 16 | −5.181 | 2.00 | 0.62 | 3.0 ± 5.8 | streams (Canada) | [37] |
Tanypodinae | 6 | −6.266 | 2.614 | streams (Canada) | [26,32] | ||
Diptera | 118 | −4.73 | 2.36 | 0.84 | 2–23 | streams, rivers (Patagonia, Argentina) | [53] |
Chironomidae | 7 | −6.38 | 3.23 | 0.90 | 3–7 | streams, rivers (Patagonia, Argentina) | [53] |
Chironomidae | −3.219 | 2.26 | 0.67 | rivers (USA) | [54] | ||
Chironomidae | 508 | −2.68 | 2.473 | 0.84 | 1.30–16.00 | lake littoral zone (New Zealand) | [55] |
Chironomidae | 352 | −7.00 | 2.59 | 0.90 | 3.12–26.58 | shallow temperate lakes (Germany) | [56] |
Chironomini | 119 | −6.93 | 2.50 | 0.93 | 3.13–26.58 | shallow temperate lakes (Germany) | [56] |
Orthocladiinae | 25 | −7.40 | 2.74 | 0.94 | 3.26–9.53 | shallow temperate lakes (Germany) | [56] |
Tanypodinae | 19 | −4.63 | 1.44 | 0.92 | 2.24–10.35 | shallow temperate lakes (Germany) | [56] |
Tanytarsini | 46 | −5.00 | 1.39 | 0.83 | 2.06–9.52 | shallow temperate lakes (Germany) | [56] |
Chironomidae | 150 | −3.46 | 1.198 | 0.89 | 3–16 | rivers (Iran) | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamburska, L.; Zaupa, S.; Boggero, A. Size-Pattern and Larval-Length–Mass Relationships for the Most Common Chironomid Taxa in the Deep Subalpine Lake Maggiore. Water 2023, 15, 2730. https://doi.org/10.3390/w15152730
Kamburska L, Zaupa S, Boggero A. Size-Pattern and Larval-Length–Mass Relationships for the Most Common Chironomid Taxa in the Deep Subalpine Lake Maggiore. Water. 2023; 15(15):2730. https://doi.org/10.3390/w15152730
Chicago/Turabian StyleKamburska, Lyudmila, Silvia Zaupa, and Angela Boggero. 2023. "Size-Pattern and Larval-Length–Mass Relationships for the Most Common Chironomid Taxa in the Deep Subalpine Lake Maggiore" Water 15, no. 15: 2730. https://doi.org/10.3390/w15152730
APA StyleKamburska, L., Zaupa, S., & Boggero, A. (2023). Size-Pattern and Larval-Length–Mass Relationships for the Most Common Chironomid Taxa in the Deep Subalpine Lake Maggiore. Water, 15(15), 2730. https://doi.org/10.3390/w15152730