Time-Lag Response of Landslide to Reservoir Water Level Fluctuations during the Storage Period: A Case Study of Baihetan Reservoir
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.1.1. Location of the Study Area
2.1.2. Topography and Terrain
2.1.3. Hydrological and Meteorological Conditions
2.1.4. Stratigraphy and Lithology
2.1.5. Active Tectonics
2.2. Data Set
2.2.1. LiCSAR Data
2.2.2. Auxiliary Data
3. Materials and Methods
3.1. Analysis of SAR Data Geometric Distortion
3.2. GACOS Atmospheric Correction
3.3. Phase Unwrapping Error Removal
3.4. NSBAS Method to Invert Time Series Deformation Information in the Study Area
3.5. TLCC Model Analysis of Deformation Lag Effect
4. Results
4.1. Acquisition and Spatial Distribution Analysis of Ground Deformation Information
4.2. Identification and Time Evolution Analysis of Reservoir Bank Landslide
4.3. Quantitative Analysis of the Lag Time of Reservoir Bank Landslide Deformation
5. Discussion
5.1. Evaluation of LiCSBAS Technology Measurement Accuracy
5.2. Analysis of Reservoir Bank Landslide Lag Effect
5.3. Analysis of the Causes of Reservoir Bank Landslide Deformation Lag
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, C.; Huang, G.W.; Zhang, Q.; Li, X.; Bai, Z.W.; Du, Y. GNSS/Accelerometer Adaptive Coupled Landslide Deformation Monitoring Technology. Remote Sens. 2022, 14, 21. [Google Scholar] [CrossRef]
- Huang, J.L.; Zhang, T.; Li, J.L. Comparative analysis of empirical estimate methods of reservoir bank landslide surge. Rock Soil Mech. 2014, 35, 133–140. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, X.; Zhu, D.; Wu, W.; Yang, X.; Guo, S.; Shi, C.; Huang, C.; Li, F.; Liu, X. Identification and Analysis of Landslides in the Ahai Reservoir Area of the Jinsha River Basin Using a Combination of DS-InSAR, Optical Images, and Field Surveys. Remote Sens. 2022, 14, 6274. [Google Scholar] [CrossRef]
- Ye, R.; Fu, X.; Guo, F.; Yi, Q.; Zhang, J.; Li, C.; Hou, S.; Liu, N. Deformation characteristics and mechanism analysis of geological hazards during operation period of Three Gorges Reservoir. J. Eng. Geol. 2021, 29, 680–692. [Google Scholar] [CrossRef]
- Han, H.; Shi, B.; Zhang, L. Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change. Eng. Geol. 2021, 280, 105876. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, H.; Zhou, W.; Zhu, Y.; Liu, Z.; Ma, S.; Yang, D.; Tang, B. The post-failure spatiotemporal deformation of certain translational landslides may follow the pre-failure pattern. Remote Sens. 2022, 14, 2333. [Google Scholar] [CrossRef]
- Qiu, H.; Zhu, Y.; Zhou, W.; Sun, H.; He, J.; Liu, Z. Influence of DEM resolution on landslide simulation performance based on the Scoops3D model. Geomat. Nat. Hazards Risk 2022, 13, 1663–1681. [Google Scholar] [CrossRef]
- Dykes, A.P.; Bromhead, E.N. Hazards from lakes and reservoirs: New interpretation of the Vaiont disaster. J Mt. Sci. 2022, 19, 1717–1737. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Yang, M.; Liao, M. Complex surface displacements of the Nanyu landslide in Zhouqu, China revealed by multi-platform InSAR observations. Eng. Geol. 2023, 317, 107069. [Google Scholar] [CrossRef]
- Li, L.; Yao, X.; Yao, J.; Zhou, Z.; Feng, X.; Liu, X. Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China. Nat. Hazards 2019, 98, 719–733. [Google Scholar] [CrossRef]
- Ma, S.; Qiu, H.; Zhu, Y.; Yang, D.; Tang, B.; Wang, D.; Wang, L.; Cao, M. Topographic changes, surface deformation and movement process before, during and after a rotational landslide. Remote Sens. 2023, 15, 662. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Z.; Chen, M.; Xu, H.; Yang, Y.; Zhang, J.; Wu, Q.; Wang, M.; Song, Z.; Ding, F. Research hotspots and frontiers of mountain flood disaster: Bibliometric and visual analysis. Water 2023, 15, 673. [Google Scholar] [CrossRef]
- Dun, J.; Feng, W.; Yi, X.; Zhang, G.; Wu, M. Detection and Mapping of Active Landslides before Impoundment in the Baihetan Reservoir Area (China) Based on the Time-Series InSAR Method. Remote Sens. 2021, 13, 3213. [Google Scholar] [CrossRef]
- Xue, F.; Lv, X.; Dou, F.; Yun, Y. A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis. IEEE Geosci. Remote Sens. Mag. 2020, 8, 22–42. [Google Scholar] [CrossRef]
- He, Y.F.; Xu, G.C.; Kaufmann, H.; Wang, J.T.; Ma, H.; Liu, T. Integration of InSAR and LiDAR Technologies for a Detailed Urban Subsidence and Hazard Assessment in Shenzhen, China. Remote Sens. 2021, 13, 17. [Google Scholar] [CrossRef]
- Zhu, C.H.; Wang, C.S.; Zhang, B.C.; Qin, X.Q.; Shan, X.J. Differential Interferometric Synthetic Aperture Radar data for more accurate earthquake catalogs. Remote Sens. Environ. 2021, 266, 11. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Lu, Z.; Oommen, T. Dramatic volcanic instability revealed by InSAR. Geology 2015, 43, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Lippl, S.; Vijay, S.; Braun, M. Automatic delineation of debris-covered glaciers using InSAR coherence derived from X-, C-and L-band radar data: A case study of Yazgyl Glacier. J. Glaciol. 2018, 64, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.F.; Yu, H.W.; Lan, Y.; Xing, M.D. Artificial Intelligence In Interferometric Synthetic Aperture Radar Phase Unwrapping: A Review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 10–28. [Google Scholar] [CrossRef]
- Osmanoglu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Notti, D.; Davalillo, J.C.; Herrera, G.; Mora, O. Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat. Hazards Earth Syst. Sci. 2010, 10, 1865–1875. [Google Scholar] [CrossRef]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 system capabilities and applications. In Proceedings of the IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS)/35th Canadian Symposium on Remote Sensing, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460. [Google Scholar]
- Morishita, Y.; Lazecky, M.; Wright, T.J.; Weiss, J.R.; Elliott, J.R.; Hooper, A. LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sens. 2020, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Morishita, Y. Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS. Prog. Earth Planet. Sci. 2021, 8, 23. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, Z.; Zhang, Q.; de la Fuente, J. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Lin, H.; Huang, M.; Chang, R. Delay phenomenon of shallow slope failure triggered by rainfall and its correlation with soil parameters. J. Cent. South Univ. (Sci. Technol.) 2018, 49, 150–157. [Google Scholar]
- Huang, G.; Wang, J.; Du, Y.; Bai, Z.; Wang, D. Time-delay Analysis and Prediction of Landslide Considering Precipitation and Reservoir Water Level, A Case Study of Xinpu Landslide in Three Gorges Reservoir Area, China. J. Earth Sci. Environ. 2021, 43, 621–631. [Google Scholar] [CrossRef]
- Gao, C.; Liu, Y.; Xue, X.; Yi, Q.; Chen, J. Study on deformation lag time effect of typical colluvial landslide in Three Gorges Reservoir Area. J. Eng. Geol. 2021, 29, 1427–1436. [Google Scholar] [CrossRef]
- Huang, H.F.; Yi, W.; Lu, S.Q.; Yi, Q.L.; Zhang, G.D. Use of Monitoring Data to Interpret Active Landslide Movements and Hydrological Triggers in Three Gorges Reservoir. J. Perform. Constr. Facil. 2016, 30, 11. [Google Scholar] [CrossRef]
- Shi, A.; Niu, R. Research on the Displacement Prediction Model of Landslide under the Influence of the Response Hysteresis of Reservoir Water Level. Saf. Environ. Eng. 2013, 20, 26–29+35. [Google Scholar]
- Chen, L.; Zou, Z.; Yuan, Y.; Wang, Y. Displacement prediction of reservoir landslide considering lag effect of inducing factors. Yangtze River 2018, 49, 60–65. [Google Scholar] [CrossRef]
- Wu, M.; Cui, Z.; Yi, X.; Feng, W.; Yin, B.; Xue, Z.; Han, J. Identification of Geohazards in Xiangbiling-Yezhutang Section of Baihetan Reservoir Area Using Multi-source Remote Sensing Data. J. Chang. River Sci. Res. Inst. 2023, 40, 155–163. [Google Scholar]
- Zhao, C.Y.; Lu, Z. Remote Sensing of LandslidesA Review. Remote Sens. 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Xi, W. Study on Remote Sensing Image Preprocessing Method and Landslide Feature Identification of UAV in Northeast Yunnan Mountain Area. Ph.D. Thesis, Yunnan Normal University, Kunming, China, 2019. [Google Scholar]
- Wang, Q.; Yu, W.; Xu, B.; Wei, G. Assessing the use of GACOS products for SBAS-INSAR deformation monitoring: A case in Southern California. Sensors 2019, 19, 3894. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, H.P.; Li, S. A novel layover and shadow detection method for InSAR. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 22–23 October 2013; pp. 441–445. [Google Scholar]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; Garcia-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Oliver-Cabrera, T.; Jones, C.E.; Yunjun, Z.; Simard, M. InSAR phase unwrapping error correction for rapid repeat measurements of water level change in wetlands. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Deschamps-Ostanciaux, E.; Thollard, F.; Monasson, S.; Pointal, E.; Laurent, C.; Doin, M.-P.; Pathier, E.; Pinel, V.; Lasserre, C.; Grandin, R. A new service for computing Sentinel-1 InSAR interferograms using NSBAS. In Proceedings of the 21st EGU General Assembly, EGU2019, Vienna, Austria, 7–12 April, 2019. [Google Scholar]
- Doin, M.-P.; Guillaso, S.; Jolivet, R.; Lasserre, C.; Lodge, F.; Ducret, G.; Grandin, R. Presentation of the small baseline NSBAS processing chain on a case example: The Etna deformation monitoring from 2003 to 2010 using Envisat data. In Proceedings of the Fringe Symposium, Frascati, Italy, 19–23 September 2011; pp. 3434–3437. [Google Scholar]
- Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Zeng, Q.; Muller, J.-P. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 253–264. [Google Scholar] [CrossRef]
- Zhao, C.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. Landslide identification and monitoring along the Jinsha River catchment (Wudongde reservoir area), China, using the InSAR method. Remote Sens. 2018, 10, 993. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.R.; Walters, R.J.; Morishita, Y.; Wright, T.J.; Lazecky, M.; Wang, H.; Hussain, E.; Hooper, A.J.; Elliott, J.R.; Rollins, C. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. Geophys. Res. Lett. 2020, 47, e2020GL087376. [Google Scholar] [CrossRef]
- Wen, N.; Dai, K.; Tomas, R.; Wu, M.; Chen, C.; Deng, J.; Shi, X.; Feng, W. Revealing the time lag between slope stability and reservoir water fluctuation from InSAR observations and wavelet tools—A case study in Maoergai Reservoir (China). GIScience Remote Sens. 2023, 60, 2170125. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Gong, H.; Lei, K.; Zhou, C.; Lu, Z.; Zhao, D. Inversion of groundwater storage variations considering lag effect in Beijing plain, from Radarsat-2 with SBAS-InSAR Technology. Remote Sens. 2022, 14, 991. [Google Scholar] [CrossRef]
- Huang, D.; Luo, S.-L.; Zhong, Z.; Gu, D.-M.; Song, Y.-X.; Tomás, R. Analysis and modeling of the combined effects of hydrological factors on a reservoir bank slope in the Three Gorges Reservoir area, China. Eng. Geol. 2020, 279, 105858. [Google Scholar] [CrossRef]
- Dai, K.; Chen, C.; Shi, X.; Wu, M.; Feng, W.; Xu, Q.; Liang, R.; Zhuo, G.; Li, Z. Dynamic landslides susceptibility evaluation in Baihetan Dam area during extensive impoundment by integrating geological model and InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103157. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, J.; Xue, X. Interpreting the influence of rainfall and reservoir infilling on a landslide. Landslides 2016, 13, 1139–1149. [Google Scholar] [CrossRef]
- Miao, F.; Wu, Y.; Török, Á.; Li, L.; Xue, Y. Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation. Geosci. Front. 2022, 13, 101378. [Google Scholar] [CrossRef]
- Li, C.; Fu, Z.; Wang, Y.; Tang, H.; Yan, J.; Gong, W.; Yao, W.; Criss, R.E. Susceptibility of reservoir-induced landslides and strategies for increasing the slope stability in the Three Gorges Reservoir Area: Zigui Basin as an example. Eng. Geol. 2019, 261, 105279. [Google Scholar]
- Yang, Z.; Chen, M.; Zhang, J.; Ding, P.; He, N.; Yang, Y. Effect of initial water content on soil failure mechanism of loess mudflow disasters. Front. Ecol. Evol. 2023, 11, 1141155. [Google Scholar] [CrossRef]
Orbit | Frame | Data Time Phase | Number of Images | Imaging Mode | Wave | Wavelength/cm |
---|---|---|---|---|---|---|
Ascending | 026A_06324_131313 | 1 July 2019–27 April 2022 | 238 | IW | C | 5.6 |
Descending | 062D_06231_131313 | 3 July 2019–17 April 2022 | 329 | IW | C | 5.6 |
Data Name | Data Time-Phase | Data Type | Data Scale | Data Source |
---|---|---|---|---|
GACOS | July 2019–April 2022 | Raster | 90 m | Newcastle University, UK |
ALOS DEM | 2018 | Raster | 30 m | Japan Aerospace Exploration Agency (JAXA) |
Elevation | 2018 | Raster | 30 m | Japan Aerospace Exploration Agency (JAXA) |
Slope | 2018 | Raster | 30 m | Japan Aerospace Exploration Agency (JAXA) |
Aspect | 2018 | Raster | 30 m | Japan Aerospace Exploration Agency (JAXA) |
Fractional Vegetation Cover | July 2019–April 2022 | Raster | 30 m | Google Earth Engine |
Google Images | 2021 | - | 0.2 m | Google Earth |
Comparative Study | Dun, et al., 2022 [13]. | Wu, et al., 2022 [33]. | Dai, et al., 2023 [48]. | This Study |
---|---|---|---|---|
SAR data | Sentinel/PALSAR | Sentinel | Sentinel | LiCSAR (Sentinel) |
Orbital direction | Ascending Descending | Ascending Descending | Ascending Descending | Ascending Descending |
Processing Software | SARscape | SARscape | SARscape | LiCSBAS |
Time span | October 2014~August 2020 | April 2014~March 2021 | April 2020~October 2021 | July 2019~April 2022 |
Ascending orbit (mm/year) | −78~67 | −41~68 | −132~50 (Before water storage) | −126~93 |
Descending orbit (mm/year) | −56~10 | −24~46 | −145~45 (After water storage) | −88~43 |
Landslide (Number) | Lagging Time/d | Elevation/m | Slope/(°) | Aspect/(°) | FVC | Rockiness |
---|---|---|---|---|---|---|
Miansha Village (L1) | 5 | 1231 | 48.43 | 200.53 | 0 | Mixed sedimentary rocks |
Dawanzi (L2) | 7 | 869 | 37.19 | 106.43 | 0.19 | Mixed sedimentary rocks |
Wujia Village (L3) | 6 | 808 | 41.93 | 160.63 | 0.10 | Mixed sedimentary rocks |
Wuli (L4) | 7 | 964 | 33.24 | 288.69 | 0.14 | Acidic deep-formed rocks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Xi, W.; Yang, Z.; Shi, Z.; Huang, G.; Guo, J.; Yang, D. Time-Lag Response of Landslide to Reservoir Water Level Fluctuations during the Storage Period: A Case Study of Baihetan Reservoir. Water 2023, 15, 2732. https://doi.org/10.3390/w15152732
Yang Z, Xi W, Yang Z, Shi Z, Huang G, Guo J, Yang D. Time-Lag Response of Landslide to Reservoir Water Level Fluctuations during the Storage Period: A Case Study of Baihetan Reservoir. Water. 2023; 15(15):2732. https://doi.org/10.3390/w15152732
Chicago/Turabian StyleYang, Zhengrong, Wenfei Xi, Zhiquan Yang, Zhengtao Shi, Guangcai Huang, Junqi Guo, and Dongqing Yang. 2023. "Time-Lag Response of Landslide to Reservoir Water Level Fluctuations during the Storage Period: A Case Study of Baihetan Reservoir" Water 15, no. 15: 2732. https://doi.org/10.3390/w15152732
APA StyleYang, Z., Xi, W., Yang, Z., Shi, Z., Huang, G., Guo, J., & Yang, D. (2023). Time-Lag Response of Landslide to Reservoir Water Level Fluctuations during the Storage Period: A Case Study of Baihetan Reservoir. Water, 15(15), 2732. https://doi.org/10.3390/w15152732