An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations
Abstract
1. Introduction
2. Numerical Approach
3. Analysis of Results
3.1. Practical Application
3.2. Validation
4. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Cross-sectional area of pipe (m2) |
D | Internal pipe diameter (m) |
f | Friction factor (-) |
g | Gravity acceleration (m s−2) |
k | Polytropic coefficient (-) |
j | Used function in the Newton–Raphson equation |
L | Water column length (m) |
LT | Pipe length (m) |
P | Function based on piston flow model |
patm* | Atmospheric pressure (101,325 Pa) |
p*1 | Air pocket pressure (Pa) |
Q | Function based on both mass oscillation equation and polytropic law |
Rv | Resistance coefficient (ms2 m−6) |
t | Time (s) |
v | Water velocity (m s−1) |
V | Vector field on a region in the plane (L, v) |
x | Air pocket size (m) |
X | Vector function of t |
r | Water density (kg m−3) |
θ | Pipe slope (rad) |
γw | Water unit weight (N m−3) |
Subscripts | |
0 | Refers to an initial condition |
f | Refers to a final condition |
i | Iteration number |
Superscripts | |
′ | Derivative |
References
- Ramezani, L.; Karney, B.; Malekpour, A. The Challenge of Air Valves: A Selective Critical Literature Review. J. Water Resour. Plan. Manag. 2016, 141, 04015017. [Google Scholar] [CrossRef]
- Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Mora-Melia, D.; Iglesias-Rey, P.L. Hydraulic Modeling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review. Urban Water J. 2019, 16, 299–311. [Google Scholar] [CrossRef]
- AWWA (American Water Works Association). Manual of Water Supply Practices M51—Air Valves: Air Release, Air/Vacuum and Combination; AWWA: Denver, CO, USA, 2016. [Google Scholar]
- Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket. Urban Water J. 2018, 15, 346–352. [Google Scholar] [CrossRef]
- Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Iglesias-Rey, P.L.; Martínez-Solano, F.J. Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. J. Hydraul. Eng. 2018, 144, 06018004. [Google Scholar] [CrossRef]
- Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Quiñones-Bolaños, E.E.; Gatica, G.; Coronado-Hernández, J.R. Simplified Mathematical Model for Computing Draining Operations in Pipelines of Undulating Profiles with Vacuum Air Valves. Water 2020, 12, 2544. [Google Scholar] [CrossRef]
- Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vučkovič, S.; Hou, Q.; van’t Westende, J.M.C. Emptying of Large-Scale Pipeline by Pressurized Air. J. Hydraul. Eng. 2012, 138, 1090–1100. [Google Scholar] [CrossRef]
- Tijsseling, A.; Hou, Q.; Bozku¸s, Z.; Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. J. Press. Vessel Technol. 2016, 138, 031301. [Google Scholar] [CrossRef]
- Besharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Backflow Air and Pressure Analysis in Emptying Pipeline Containing Entrapped Air Pocket. Urban Water J. 2018, 15, 769–779. [Google Scholar] [CrossRef]
- Hurtado-Misal, A.D.; Hernández-Sanjuan, D.; Coronado-Hernández, O.E.; Espinoza-Román, H.; Fuertes-Miquel, V.S. Analysis of Sub-Atmospheric Pressures during Emptying of an Irregular Pipeline without an Air Valve Using a 2D CFD Model. Water 2021, 13, 2526. [Google Scholar] [CrossRef]
- Besharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. J. Hydraul. Res. 2020, 58, 553–565. [Google Scholar] [CrossRef]
- Liou, C.P.; Hunt, W.A. Filling of pipelines with undulating elevation profiles. J. Hydraul. Eng. 1996, 122, 534–539. [Google Scholar] [CrossRef]
- Izquierdo, J.; Fuertes, V.; Cabrera, E.; Iglesias, P.; Garcia-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res. 1999, 37, 579–590. [Google Scholar] [CrossRef]
- Martins, N.M.; Delgado, J.N.; Ramos, H.M.; Covas, D.I. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. J. Hydraul. Res. 2017, 55, 506–519. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, D. Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe. J. Hydraul. Res. 2013, 51, 469–474. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, D.; Karney, B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. J. Hydraul. Eng. 2013, 139, 949–959. [Google Scholar] [CrossRef]
- Fuertes-Miquel, V.S.; López-Jiménez, P.A.; Martínez-Solano, F.J.; López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves. Can. J. Civ. Eng. 2016, 43, 1052–1061. [Google Scholar] [CrossRef]
- Chapra, S.; Canale, R. Numerical Methods for Engineers, 7th ed.; Mcgraw-Hill Education, Cop: New York, NY, USA, 2015. [Google Scholar]
- Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis; Springer: New York, NY, USA; London, UK, 2011. [Google Scholar]
- Zill, D. Differential Equations with Boundary-Value Problems; Cengage Learning: Melbourne, Australia, 2016. [Google Scholar]
- Suribabu, C.R. Location and Sizing of Scour Valves in Water Distribution Network. J. Hydraul. Eng. 2009, 15, 118–130. [Google Scholar] [CrossRef]
- Suribabu, C.R. Optimal locations and sizing of scour valves in water distribution networks. J. Pipeline Syst. Eng. 2020, 11, 04019056. [Google Scholar] [CrossRef]
- Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Mora-Melia, D.; Iglesias-Rey, P.L. Transient phenomena during the emptying process of a single pipe with water–air interaction. J. Hydraul. Res. 2018, 57, 3. [Google Scholar] [CrossRef]
i | Lf,i (m) | J (Lf,i) | j′ (Lf,i) | Lf,i+1 (m) | Lf,i+1 − Lf,i (m) |
---|---|---|---|---|---|
0 | 204.33 | −0.03197 | 0.00202 | 220.16 | 15.83 |
1 | 220.16 | −0.00185 | 0.00180 | 221.19 | 1.03 |
2 | 221.19 | −0.00001 | 0.00178 | 221.20 | 0.00 |
3 | 221.20 | 0.00000 | 0.00178 | 221.20 | 0.00 |
… | … | … | … | … | … |
18 | 221.20 | 0.00000 | 0.00178 | 221.20 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado-Hernández, O.E.; Bonilla-Correa, D.M.; Lovo, A.; Fuertes-Miquel, V.S.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations. Water 2022, 14, 3364. https://doi.org/10.3390/w14213364
Coronado-Hernández OE, Bonilla-Correa DM, Lovo A, Fuertes-Miquel VS, Gatica G, Linfati R, Coronado-Hernández JR. An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations. Water. 2022; 14(21):3364. https://doi.org/10.3390/w14213364
Chicago/Turabian StyleCoronado-Hernández, Oscar E., Dalia M. Bonilla-Correa, Aldo Lovo, Vicente S. Fuertes-Miquel, Gustavo Gatica, Rodrigo Linfati, and Jairo R. Coronado-Hernández. 2022. "An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations" Water 14, no. 21: 3364. https://doi.org/10.3390/w14213364
APA StyleCoronado-Hernández, O. E., Bonilla-Correa, D. M., Lovo, A., Fuertes-Miquel, V. S., Gatica, G., Linfati, R., & Coronado-Hernández, J. R. (2022). An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations. Water, 14(21), 3364. https://doi.org/10.3390/w14213364