# Estimation of Fractal Dimension of Suspended Sediments from Two Mexican Rivers

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Sampling Campaign

#### 2.2. Laboratory Analysis

#### 2.3. Fractal Dimension Calculation by the Box Counting Method (BC-Method)

_{r}vs. 1/r, where N

_{r}is the number of frames with at least a gray level that covers the image for each r value.

#### 2.4. Triangular Box Counting Method (TBC-Method)

_{r}.

#### 2.5. Models for Fractal Dimension Calculation

_{ep}) when calculating the permeable drag coefficient (C

_{Df}) and a is a constant (C

_{Df}= a/R

_{ep}

^{n}).

## 3. Results

## 4. Discussion

^{3}, which is similar to the one found in this study. Van der Lee [18] measured in situ floc size and settling velocity in the Dollard estuary, Holland using underwater video cameras-UVC. He found flocs size varying from 100 to 300 μm with densities varying from 1500 to 1100 kg/m

^{3}for a concentration of 350 mg/L. Using Kranenburg [2] equation, one can show that the floc densities of Grijava River sediment and the Usumacinta River sediments are in the range of floc densities found in the Dollard estuary. Xia et al. [19] measured floc sizes and settling velocities in the Pearl River estuary, China using LISST and found very small flocs (size under 96 μm).

^{−9})ρ

_{f}+ 7.32 × 10

^{−6}. This relationship gives the primary particle diameter for the Usumacinta River as 4.2 μm and for the Grijalva river as 4.1 μm. The former is very similar to the one used in this research for the Usumacinta River and the latter is almost half the one used for the Grijalva river. Many et al. [21] measured floc size and settling velocity in the Rhone estuary using LISST and found that primary particle diameters varied from 1 to 12 μm. Their analysis was able to show that the fractal dimension varied from 2.0 to 2.5, which agrees with the values found in this research.

## 5. Conclusions

## Author Contributions

## Funding

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Droppo, I.G. Rethinking what constitutes suspended sediment. Hydrol. Process.
**2001**, 14, 653–667. [Google Scholar] [CrossRef] - Kranenburg, C. The fractal structure of cohesive sediment aggregates. Estuar. Coast. Shelf Sci.
**1994**, 39, 1665–1680. [Google Scholar] [CrossRef] - Bouchez, J.; Metivier, F.; Lupker, M.; Maurice, L.; Perez, M.; Gaillardet, J.; France-Lanord, C. Prediction of depth-integrated fluxes of suspended sediment in the Amazon River: Particle aggregation as a complicating factor. Hydrol. Process.
**2011**, 25, 778–794. [Google Scholar] [CrossRef] - Jordan, P.R. Fluvial Sediment of the Mississippi River at St. Louis, Missouri; USGS Water-Supply Paper 1802; United States Government Printing Office: Washington, DC, USA, 1965.
- Scott, C.H.; Stephens, H.D. Special Sediment Investigations: Mississippi River at St. Louis, Missouri; Water Supply Paper 1819; United States Government Printing Office: Washington, DC, USA, 1966. [CrossRef]
- Li, W.; Wang, J.; Yang, S.; Zhang, P. Determining the existence of the fine sediment flocculation in the Three Gorges Reservoir. J. Hydraul. Eng.
**2015**, 141, 5014008. [Google Scholar] [CrossRef] - Salinas-Tapia, H.; Garcia-Aragon, J.A.G.; Hernandez, D.M.; Garcia, B.B. Particle Tracking Velocimetry (PTV) Algorithm for Non-uniform and Nonspherical Particles. In Proceedings of the Electronics, Robotics and Automotive Mechanics Conference (CERMA’06), Cuernavaca, México, 26–29 September 2006; Volume II. [Google Scholar]
- Salinas, T.H.; Robles, R.C.O.; Chávez, C.D.; Bautista, C.C.F. Caracterización geométrica y cinemática de un chorro pulverizado empleando la técnica óptica PTV. Tecnologia y Ciencias del Agua
**2014**, 5, 125–140. [Google Scholar] - Félix-Félix, J.R.; Salinas-Tapia, H.; Bautista, C.; García-Aragón, J.; Burguete, J.; Playán, E. A modified particle tracking velocimetry technique to characterize sprinkler irrigation drops. Irrig. Sci.
**2017**, 35, 515–531. [Google Scholar] [CrossRef] - López, R.B.; Salinas, T.H.; García, P.D.; Durán, G.D.; Gallego, A.I.; Fonseca, O.C.; Garcia, A.J.A.; Díaz, D.C. Performance study of annular settler with gratings in circular aquaculture tank using computational fluid dynamics. Aquac. Eng.
**2021**, 92, 102143. [Google Scholar] [CrossRef] - Malek, M.; Allano, D.; Coëtmellec, S.; Lebrun, D.; Özkul, C. Digital in-line holography for three-dimensional-two-components particle tracking velocimetry. Meas. Sci. Technol.
**2004**, 15, 699–705. [Google Scholar] [CrossRef] - Long, M.; Peng, F. A Box-counting Method with adaptable box height for measuring the fractal feature of images. Radio Eng.
**2013**, 22, 208–2013. [Google Scholar] - Kaewaramsri, Y.; Woraratpanya, K. Improved Triangle Box-Counting Method for Fractal Dimension Estimation. In Recent Advances in Information and Communication Technology; Unger, H., Meesad, P., Boonkrong, S., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2015; Volume 361. [Google Scholar] [CrossRef]
- Coronel, A.W. Optomecatronics, Sistema Para Medir Velocidad en Flujo de Fluidos en 3D. Master’s Thesis, Centro de Investigaciones en Óptica, León, Guanajuato, México, 2011. [Google Scholar]
- Garcia-Aragon, J.A.; Salinas-Tapia, H.; Moreno-Vega, J.; Diaz-Palomarez, V.; Tejeda-Vega, S. A model for the settling velocity of flocs; Application to an aquaculture recirculation tank. Int. J. Comput. Methods Exp. Meas.
**2014**, 2, 313–322. [Google Scholar] [CrossRef] [Green Version] - Lau, Y.L.; Krishnappan, B.G. Measurement of size distribution of settling flocs. In NWRI Publication No. 97-223; National Water Research Institute, Environment Canada: Burlington, ON, Canada, 1997. [Google Scholar]
- Fox, J.M.; Hill, P.S.; Milligan, T.G.; Boldrin, A. Flocculation and sedimentation n the Po River Delta. Mar. Geol.
**2004**, 203, 95–107. [Google Scholar] [CrossRef] - Van der Lee, W.T.B. Temporal variation of floc size and settling velocity in the Dollard estuary. Cont. Shelf Res.
**2000**, 20, 1495–1511. [Google Scholar] [CrossRef] - Xia, X.M.; Li, Y.; Yang, H.; Wu, C.Y.; Sing, T.H.; Pong, H.K. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China. Cont. Shelf Res.
**2004**, 24, 1809–1826. [Google Scholar] [CrossRef] - Maggi, F. The settling velocity of mineral, biomineral and biological particles and aggregates in water. J. Geophys. Res.
**2013**, 118, 22118–22132. [Google Scholar] [CrossRef] - Many, G.; de Madron, X.D.; Verney, R.; Bourrin, F.; Renosh, P.R.; Jourdin, F.; Gangloff, A. Geometry, fractal dimension and settling velocity of flocs during flooding conditions in the Rhône ROFI. Estuar. Coast. Shelf Sci.
**2019**, 219, 1–13. [Google Scholar] [CrossRef] - Krishnappan, B.G. Review of a semi-empirical modelling approach for cohesive sediment transport in river systems. Water
**2022**, 14, 256. [Google Scholar] [CrossRef] - Walch, H.; von der Kammer, F.; Hofmann, T. Freshwater Suspended Particulate Matter–Key Components and Processes in Floc Formation and Dynamics. Water Res.
**2022**, 220, 118655. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Location of Chichicastle #2 (Usumacinta) and Los Idolos # 1 (Grijalva) sampling stations. (

**a**) Overall location, (

**b**) los idolos cross section, (

**c**) Chichicastle cross section.

**Figure 4.**Division of frame image in two triangular frames with four patterns (

**a**) up triangular (

**b**) down triangular (

**c**) left triangular (

**d**) right triangular.

**Figure 8.**Time evolution of floc diameter in RAF experiments for the Grijalva river. Circles are experimental values and doted line the trend with time.

**Figure 9.**Best fit of the fractal dimension for the Usumacinta River with Garcia Aragon et al. [16] model at different flocculation times using TBC and BC methods; (

**a**) 30 min, (

**b**) 45 min, (

**c**) 60 min.

**Figure 10.**Best fit of the fractal dimension for the Grijalva River with Garcia Aragon et al. [16] model at different flocculation times using TBC and BC methods; (

**a**) 30 min, (

**b**) 45 min, (

**c**) 60 min.

**Figure 11.**Best fit of the fractal dimension for the Usumacinta River with Lau and Krishnappan [15] model at different flocculation times using TBC and BC methods; (

**a**) 30 min, (

**b**) 45 min, (

**c**) 60 min.

**Figure 12.**Best fit of the fractal dimension for the Grijalva River with Lau and Krishnappan [15] model at different flocculation times using TBC and BC methods; (

**a**) 30 min, (

**b**) 45 min, (

**c**) 60 min.

Hydraulic Parameters | Grijalva | Usumacinta |
---|---|---|

Flow rate (m^{3}/s) | 1420–1055 | 2085–1755 |

Top width (m) | 200–185 | No data |

Mean velocity (m/s) | 0.71–0.54 | 0.79–0.7 |

Maximum depth (m) | 13.2–12.2 | 9.9–9.1 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zepeda Mondragon, H.; Garcia Aragon, J.A.; Salinas Tapia, H.; Krishnappan, B.G.
Estimation of Fractal Dimension of Suspended Sediments from Two Mexican Rivers. *Water* **2022**, *14*, 2774.
https://doi.org/10.3390/w14182774

**AMA Style**

Zepeda Mondragon H, Garcia Aragon JA, Salinas Tapia H, Krishnappan BG.
Estimation of Fractal Dimension of Suspended Sediments from Two Mexican Rivers. *Water*. 2022; 14(18):2774.
https://doi.org/10.3390/w14182774

**Chicago/Turabian Style**

Zepeda Mondragon, Hilda, Juan Antonio Garcia Aragon, Humberto Salinas Tapia, and Bommanna G. Krishnappan.
2022. "Estimation of Fractal Dimension of Suspended Sediments from Two Mexican Rivers" *Water* 14, no. 18: 2774.
https://doi.org/10.3390/w14182774