Performance Improvement of a Drag Hydrokinetic Turbine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Test Rig
2.2. Savonius Rotor Physical Model
2.3. Experimental Apparatus
- Tr: The dynamic torque,
- ω: The angular velocity,
- ρ: The water density,
- A: The area of the rotor blade,
- V∞: The water flow velocity,
- R: The radius of the rotor.
- Fr: The force applied on the rotor shaft,
- rp: The radius of the pulley,
- rn: The radius of the nylon string,
- M: The mass loaded on the weighing pan,
- m: The spring balance load reading.
3. Numerical Procedures
- : The averaged velocity,
- : The averaged pressure,
- : The kinematic viscosity,
- : The specific Reynolds Stress tensor.
3.1. Computation Domain and Boundary Conditions
3.2. Meshing
3.3. Deflector System
4. Experimental Results and Validation
5. Numerical Results
5.1. Velocity Distribution
5.2. Total Pressure
5.3. Turbulent Kinetic Energy
5.4. Turbulence Eddy Dissipation
5.5. Turbulent Viscosity
5.6. Turbulent Intensity
5.7. Performance Characteristics
6. Conclusions
- The rotational speed of the Savonius rotor reaches a peak value of 119 rpm.
- The maximum experimental power coefficient Cp max = 0.14 is reached at a tip speed ratio equal to TSR = 0.69.
- From the numerical results, it has been confirmed that the performance parameters of the Savonius rotor are improved with the use of the upstream deflector.
- The most performant configuration over the different studied cases gives an improvement of 14% in the power coefficient.
- The proposed deflector system affects the flow characteristics around the Savonius rotor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
C1ε | constant of the k-ε turbulence model, dimensionless |
c | vane chord, m |
D | Savonius turbine diameter, m |
Gk | production term of turbulence, kg·m−1·s−3 |
H | Savonius turbine height, m |
k | turbulent kinetic energy, m2·s−2 |
average pressure, Pa | |
R | Savonius turbine radius, m |
s | turbine shaft diameter, m |
Tr | turbine torque, N·m |
t | time, s |
uj | velocity components, m·s−1 |
fluctuating velocity components, m·s−1 | |
V∞ | flow velocity, m·s−1 |
xi | Cartesian coordinate, m |
x | Cartesian coordinate, m |
y | Cartesian coordinate, m |
z | Cartesian coordinate, m |
ε | dissipation rate of the turbulent kinetic energy, W·kg−1 |
μ | dynamic viscosity, Pa·s |
μt | turbulent viscosity, Pa·s |
ρ | density, kg·m−3 |
ω | turbine rotational speed, rad·s−1 |
TSR | tip-speed ratio, dimensionless |
σk | constant of the k-ε turbulence model, dimensionless |
σε | constant of the k-ε turbulence model, dimensionless |
ψ | Savonius turbine vane twist angle, ° |
References
- Ocetkiewicz, I.; Tomaszwska, B.; Mróz, A. Renewable energy in education for sustainable development. The Polish experience. Renew. Sustain. Energy Rev. 2017, 80, 92–97. [Google Scholar] [CrossRef]
- Peng, Z.; Guo, W. Saturation characteristics for stability of hydro-turbine governing system with surge tank. Renew. Energy 2019, 131, 318–332. [Google Scholar] [CrossRef]
- Patel, V.; Eldho, T.I.; Prabhu, S.V. Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel. Renew. Energy 2019, 131, 1300–1317. [Google Scholar] [CrossRef]
- Khan, M.J.; Bhuyana, G.; Iqbal, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [Google Scholar] [CrossRef]
- Gupta, R.; Biswas, A.; Sharma, K.K. Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor. Renew. Energy 2008, 33, 1974–1981. [Google Scholar] [CrossRef]
- Alexander, A.J.; Holownia, B.P. Wind tunnel tests on a Savonius rotor. Wind Eng. Ind. Aerodyn. 1978, 3, 343–351. [Google Scholar] [CrossRef]
- Saha, U.K.; Thotla, S.; Maity, D. Optimum design configuration of Savonius rotor through wind tunnel experiments. Wind Eng. Ind. Aerodyn. 2008, 96, 1359–1375. [Google Scholar] [CrossRef]
- Kamoji, M.A.; Kedare, S.B.; Prabhu, S.V. Experimental investigations on single stage two stage and three stage conventional Savonius rotor. Int. J. Energy 2008, 32, 877–895. [Google Scholar] [CrossRef]
- Jeon, K.S.; Jeong, J.I.; Pan, J.K.; Ryu, K.W. Effects of the end plates with various shapes and sizes on helical Savonius wind turbines. Renew. Energy 2015, 79, 167–176. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, Y.; Xu, X.; Liu, W.; Hu, G. Research on the improvement of the performance of Savonius rotor based on numerical study. In Proceedings of the International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009. [Google Scholar]
- Zheng, M.; Zhang, X.; Zhang, L.; Teng, H.; Hu, J.; Hu, M. Uniform Test Method Optimum Design for Drag-Type Modified Savonius VAWTs by CFD Numerical Simulation. Arab. J. Sci. Eng. 2017, 43, 4453–4461. [Google Scholar] [CrossRef]
- Hayashi, T.; Li, Y.; Hara, Y. Wind tunnel tests on a different phase three-stage Savonius rotor. JSME Int. J. Ser. B Fluids Therm. Eng. 2005, 48, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Yasuyuki, N.; Ayumu, A.; Ushiyama, I. A study of the twisted sweeney-type wind turbine. Wind Eng. 2003, 27, 317–322. [Google Scholar]
- Prabhu, S.V.; Kamoji, M.A.; Kedare, S.B. Performance tests on helical Savonius rotors. Renew. Energy 2009, 34, 521–529. [Google Scholar]
- Driss, Z.; Mlayeh, O.; Driss, S. Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors. Energy 2015, 89, 708–729. [Google Scholar] [CrossRef]
- Roy, S.; Saha, U.K. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl. Energy 2015, 137, 117–125. [Google Scholar] [CrossRef]
- Hassan, A.; Hassan, S.; Ahmed, M.N.E.; Sadek, Z.K. Numerical study of improving Savonius turbine power coefficient by various blade shapes. Alex. Eng. J. 2019, 58, 429–441. [Google Scholar] [CrossRef]
- Mosbahi, M.; Elgasri, S.; Lajnef, M.; Mosbahi, B.; Driss, Z. Performance enhancement of a twisted Savonius hydrokinetic turbine with an upstream deflector. Int. J. Green Energy 2021, 18, 51–65. [Google Scholar] [CrossRef]
- Saha, U.K.; Rajkumar, M.J. On the Performance Analysis of Savonius rotor with twisted blades. Renew. Energy 2006, 31, 1776–1788. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, Y.T.; Lim, H.C. Effect of helical angle on the performance of Savonius wind turbine. In Proceedings of the 2014 World Congress on Advances in Civil Environmental and Materials (ACEM14), Busan, Korea, 24–28 August 2014. [Google Scholar]
- Blackwell, B.F.; Sheldahl, R.E.; Feltz, L.V. Wind tunnel performance data for two and three-bucket Savonius rotors. J. Energy 1978, 3, 160–164. [Google Scholar]
- Akwa, J.V.; Júnior, G.A.S.; Petry, A.P. Discussion On The Verification Of The Overlap Ratio Influence On Performance Coefficients of A Savonius Wind Rotor Using Computational Fluid Dynamics. Renew. Energy 2012, 38, 141–149. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Janiga, G.; Pap, E.; Thévenin, D. Optimization of Savonius turbines using an obstacle shielding the returning blade. Renew. Energy 2010, 35, 2618–2626. [Google Scholar] [CrossRef]
- Maldonado, R.D.; Huerta, E.; Corona, J.E.; Ceh, O.; Castillo, A.I.L.; Acosta, M.P.G.; Andrade, E.M. Design simulation and construction of a Savonius wind rotor for subsidized houses in Mexico Energy. Procedia Eng. 2014, 57, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Altan, B.D.; Atilgan, M. An Experimental and Numerical Study on the improvement of the performance of Savonius wind rotor. Energy Convers. Manag. 2008, 49, 3425–3432. [Google Scholar] [CrossRef]
- Mosbahi, M.; Ayadi, A.; Chouaibi, Y.; Driss, Z.; Tucciarelli, T. Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renew. Energy 2020, 162, 1087–1103. [Google Scholar] [CrossRef]
- Lajnef, M.; Mosbahi, M.; Chouaibi, Y.; Driss, Z. Performance Improvement in a Helical Savonius Wind Rotor. Arab. J. Sci. Eng. 2020, 45, 9305–9323. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, R.P. Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades. Renew. Energy 2017, 113, 461–478. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, R.P. Performance analysis of a Savonius hydrokinetic turbine having twisted blades. Renew. Energy 2017, 108, 502–522. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Rotor diameter (D) | 160 mm |
Rotor height (H) | 200 mm |
End plate diameter (De) | 165 mm |
Shaft diameter (s) | 20 mm |
Number of blades | 2 |
Blade chord (d) | 90 mm |
Blade thickness | 2 mm |
Blade twist angle (ψ) | 90° |
Configuration | H (mm) | L1 (mm) | L2 (mm) | L3 (mm) | Ra (mm) | β (°) | γ (°) |
---|---|---|---|---|---|---|---|
α = 15° | 200 | 115 | 100 | 110 | 110 | 20 | 35 |
α = 20° | 200 | 115 | 100 | 110 | 110 | 20 | 35 |
α = 25° | 200 | 115 | 100 | 110 | 110 | 20 | 35 |
α = 30° | 200 | 115 | 100 | 110 | 110 | 20 | 35 |
Experimental Apparatus | Systematical Error |
---|---|
Pitot tube | 1% |
Electrical balance | 2% |
Non-contact digital tachometer | 3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosbahi, M.; Lajnef, M.; Derbel, M.; Mosbahi, B.; Aricò, C.; Sinagra, M.; Driss, Z. Performance Improvement of a Drag Hydrokinetic Turbine. Water 2021, 13, 273. https://doi.org/10.3390/w13030273
Mosbahi M, Lajnef M, Derbel M, Mosbahi B, Aricò C, Sinagra M, Driss Z. Performance Improvement of a Drag Hydrokinetic Turbine. Water. 2021; 13(3):273. https://doi.org/10.3390/w13030273
Chicago/Turabian StyleMosbahi, Mabrouk, Mariem Lajnef, Mouna Derbel, Bouzid Mosbahi, Costanza Aricò, Marco Sinagra, and Zied Driss. 2021. "Performance Improvement of a Drag Hydrokinetic Turbine" Water 13, no. 3: 273. https://doi.org/10.3390/w13030273