Sequential Congo Red Elimination by UASB Reactor Coupled to Electrochemical Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Unit and Operation Conditions
2.2. Analytical Details
2.3. Experimental Design for Electrochemical Systems
3. Results and Discussion
3.1. Biological Treatment: Upflow Anaerobic Sludge Blanket
3.2. Post-Treatment Optimization: Electrochemical Systems
3.2.1. Congo Red and Chemical Oxygen Demand Degradation in Electrooxidation Process
3.2.2. CR Decolorization and COD Removal in EC Process
3.3. CR and COD Degradation by Coupled Biological-ECH Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, J.R.S.; Amaral, F.M.; Florencio, L.; Kato, M.T.; Delforno, T.P.; Gavazza, S. Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye Direct Black 22. Chemosphere 2020, 242, 125157. [Google Scholar] [CrossRef]
- Ausavasukhi, A.; Kampoosaen, C.; Kengnok, O. Adsorption characteristics of Congo red on carbonized leonardite. J. Clean. Prod. 2016, 134, 506–514. [Google Scholar] [CrossRef]
- Zhang, L.; Song, F.; Wang, S.; Wang, H.; Yang, W.; Li, Y. Efficient Removal of Hexavalent Chromium and Congo Red by Graphene Oxide/Silica Nanosheets with Multistage Pores. J. Chem. Eng. Data 2020, 65, 4354–4368. [Google Scholar] [CrossRef]
- Taher, T.; Rohendi, D.; Mohadi, R.; Lesbani, A. Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: Kinetic, equilibrium, and thermodynamic studies. Arab J. Basic Appl. Sci. 2019, 26, 125–136. [Google Scholar] [CrossRef]
- Bedekar, P.A.; Saratale, R.G.; Saratale, G.D.; Govindwar, S.P. Development of low cost upflow column bioreactor for degradation and detoxification of Blue HERD and textile effluent by Lysinibacillus sp. RGS immobilized on Loofa. Int. Biodeterior. Biodegrad. 2014, 96, 112–120. [Google Scholar] [CrossRef]
- Cervantes, F.J.; Dos Santos, A.B. Reduction of azo dyes by anaerobic bacteria: Microbiological and biochemical aspects. Rev. Environ. Sci. Bio/Technol. 2011, 10, 125–137. [Google Scholar] [CrossRef]
- Shu, J.; Wang, Z.; Huang, Y.; Huang, N.; Ren, C.; Zhang, W. Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis. J. Alloys Compd. 2015, 633, 338–346. [Google Scholar] [CrossRef]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J. 2009, 148, 354–364. [Google Scholar] [CrossRef]
- Islam, M.A.; Mozumder, M.S.I. Development of Treatment Technology for Dye Containing Industrial Wastewater. J. Sci. Res. 2010, 2, 567. [Google Scholar]
- Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, L. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour. Technol. 2008, 99, 2938–2946. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Mittal, J.; Malviya, A.; Gupta, V.K. Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J. Colloid Interface Sci. 2009, 340, 16–26. [Google Scholar] [CrossRef]
- El Haddad, M.; Regti, A.; Slimani, R.; Lazar, S. Assessment of the biosorption kinetic and thermodynamic for the removal of safranin dye from aqueous solutions using calcined mussel shells. J. Ind. Eng. Chem. 2014, 20, 717–724. [Google Scholar] [CrossRef]
- Ranjbar, D.; Raeiszadeh, M.; Lewis, L.; MacLachlan, M.J.; Hatzikiriakos, S.G. Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: A kinetic, equilibrium, and mechanistic investigation. Cellulose 2020, 27, 3211–3232. [Google Scholar] [CrossRef]
- Rahman, N.U.; Ullah, I.; Alam, S.; Khan, M.S.; Shah, L.A.; Zekker, I.; Burlakovs, J.; Kallistova, A.; Pimenov, N.; Vincevica-Gaile, Z.; et al. Activated Ailanthus altissima Sawdust as Adsorbent for Removal of Acid Yellow 29 from Wastewater: Kinetics Approach. Water 2021, 13, 2136. [Google Scholar] [CrossRef]
- Umar, A.; Khan, M.S.; Alam, S.; Zekker, I.; Burlakovs, J.; dC Rubin, S.S.; Bhowmick, G.D.; Kallistova, A.; Pimenov, N.; Zahoor, M. Synthesis and Characterization of Pd-Ni Bimetallic Nanoparticles as Efficient Adsorbent for the Removal of Acid Orange 8 Present in Wastewater. Water 2021, 13, 1095. [Google Scholar] [CrossRef]
- Dassanayake, R.S.; Acharya, S.; Abidi, N. Recent Advances in Biopolymer-Based Dye Removal Technologies. Molecules 2021, 26, 4697. [Google Scholar] [CrossRef] [PubMed]
- Singh, R. Role of Azoreductases in Bacterial Decolorization of Azo Dyes. Curr. Trends Biomed. Eng. Biosci. 2017, 9, 50–52. [Google Scholar] [CrossRef]
- Zaroual, Z.; Azzi, M.; Saib, N.; Chainet, E. Contribution to the study of electrocoagulation mechanism in basic textile effluent. J. Hazard. Mater. 2006, 131, 73–78. [Google Scholar] [CrossRef]
- Isik, M.; Sponza, D.T. Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye. Bioresour. Technol. 2005, 96, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, L.H.; Arvizu, I.C.; Garcia-Reyes, R.B.; Martinez, C.M.; Olivo-Alanis, D.; Del Angel, Y.A. Quinone-functionalized activated carbon improves the reduction of congo red coupled to the removal of p-cresol in a UASB reactor. J. Hazard Mater. 2017, 338, 233–240. [Google Scholar] [CrossRef]
- Silva, S.Q.; Silva, D.C.; Lanna, M.C.; Baeta, B.E.; Aquino, S.F. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract. Braz. J. Microbiol. 2014, 45, 1153–1160. [Google Scholar] [CrossRef]
- Dos Santos, A.B.; Cervantes, F.J.; van Lier, J.B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour. Technol. 2007, 98, 2369–2385. [Google Scholar] [CrossRef] [PubMed]
- Somasiri, W.; Li, X.F.; Ruan, W.Q.; Jian, C. Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater. Bioresour. Technol. 2008, 99, 3692–3699. [Google Scholar] [CrossRef]
- Lu, X.; Liu, R. Treatment of Azo Dye-Containing Wastewater Using Integrated Processes. In Biodegradation of Azo Dyes; Atacag Erkurt, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 133–155. [Google Scholar]
- Sathishkumar, K.; AlSalhi, M.S.; Sanganyado, E.; Devanesan, S.; Arulprakash, A.; Rajasekar, A. Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent. J. Photochem. Photobiol. B 2019, 200, 111655. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.; Venkatesh, K.; Quaff, A.R. Dye decomposition by combined ozonation and anaerobic treatment: Cost effective technology. J. Appl. Res. Technol. 2017, 15, 340–345. [Google Scholar] [CrossRef]
- Katsoni, A.; Mantzavinos, D.; Diamadopoulos, E. Coupling digestion in a pilot-scale UASB reactor and electrochemical oxidation over BDD anode to treat diluted cheese whey. Environ. Sci. Pollut. Res. 2014, 21, 12170–12181. [Google Scholar] [CrossRef] [PubMed]
- Romero-Soto, I.C.; Dia, O.; Leyva-Soto, L.A.; Drogui, P.; Buelna, G.; Diaz-Tenorio, L.M.; Ulloa-Mercado, R.G.; Gortares-Moroyoqui, P. Degradation of Chloramphenicol in Synthetic and Aquaculture Wastewater Using Electrooxidation. J. Environ. Qual. 2018, 47, 805–811. [Google Scholar] [CrossRef]
- Drogui, P.; Blais, J.A.; Mercier, G. Review of Electrochemical Technologies for Environmental Applications. Recent Pat. Eng. 2007, 1, 257–272. [Google Scholar] [CrossRef]
- Akhtar, A.; Aslam, Z.; Asghar, A.; Bello, M.M.; Raman, A.A.A. Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism. J. Environ. Chem. Eng. 2020, 8, 104055. [Google Scholar] [CrossRef]
- Buzzini, A.P.; Patrizzi, L.J.; Motheo, A.J.; Pires, E.C. Preliminary evaluation of the electrochemical and chemical coagulation processes in the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor. J. Environ. Manag. 2007, 85, 847–857. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Sakar, S. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton’s oxidation. J. Hazard. Mater. 2008, 151, 547–558. [Google Scholar] [CrossRef]
- Makwana, A.R.; Ahammed, M.M. Electrocoagulation process for the post-treatment of anaerobically treated urban wastewater. Sep. Sci. Technol. 2017, 52, 1412–1422. [Google Scholar] [CrossRef]
- Alvarez, L.H.; Cervantes, F.J. Assessing the impact of alumina nanoparticles in an anaerobic consortium: Methanogenic and humus reducing activity. Appl. Microbiol. Biotechnol. 2012, 95, 1323–1331. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- García-Gómez, C.; Drogui, P.; Zaviska, F.; Seyhi, B.; Gortáres-Moroyoqui, P.; Buelna, G.; Neira-Sáenz, C.; Estrada-alvarado, M.; Ulloa-Mercado, R.G. Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. J. Electroanal. Chem. 2014, 732, 1–10. [Google Scholar] [CrossRef]
- Ong, S.-A.; Toorisaka, E.; Hirata, M.; Hano, T. Decolorization of azo dye (Orange II) in a sequential UASB–SBR system. Sep. Purif. Technol. 2005, 42, 297–302. [Google Scholar] [CrossRef]
- Olivo-Alanis, D.; Garcia-Reyes, R.B.; Alvarez, L.H.; Garcia-Gonzalez, A. Mechanism of anaerobic bio-reduction of azo dye assisted with lawsone-immobilized activated carbon. J. Hazard. Mater. 2018, 347, 423–430. [Google Scholar] [CrossRef]
- Hu, T.L. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2001, 43, 261–269. [Google Scholar] [CrossRef]
- Alvarez, L.H.; Valdez-Espinoza, R.; García-Reyes, R.B.; Olivo-Alanis, D.; Garza-González, M.T.; Meza-Escalante, E.R.; Gortáres-Moroyoqui, P. Decolorization and biogas production by an anaerobic consortium: Effect of different azo dyes and quinoid redox mediators. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2015, 72, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Bras, R.; Gomes, A.; Ferra, M.I.; Pinheiro, H.M.; Goncalves, I.C. Monoazo and diazo dye decolourisation studies in a methanogenic UASB reactor. J. Biotechnol. 2005, 115, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Faouzi, M.; Cañizares, P.; Gadri, A.; Lobato, J.; Nasr, B.; Paz, R.; Rodrigo, M.A.; Saez, C. Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochim. Acta 2006, 52, 325–331. [Google Scholar] [CrossRef]
- Faouzi Elahmadi, M.; Bensalah, N.; Gadri, A. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes. J. Hazard. Mater. 2009, 168, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M.-Á. Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment. J. Electroanal. Chem. 2020, 878, 114578. [Google Scholar] [CrossRef]
- Zaied, M.; Bellakhal, N. Electrocoagulation treatment of black liquor from paper industry. J. Hazard. Mater. 2009, 163, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Pajootan, E.; Arami, M.; Mahmoodi, N.M. Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. J. Taiwan Inst. Chem. Eng. 2012, 43, 282–290. [Google Scholar] [CrossRef]
- Wei, M.-C.; Wang, K.-S.; Huang, C.-L.; Chiang, C.-W.; Chang, T.-J.; Lee, S.-S.; Chang, S.-H. Improvement of textile dye removal by electrocoagulation with low-cost steel wool cathode reactor. Chem. Eng. J. 2012, 192, 37–44. [Google Scholar] [CrossRef]
- Aravind, P.; Subramanyan, V.; Ferro, S.; Gopalakrishnan, R. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. Water Res. 2016, 93, 230–241. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Qudah, Y.; Assirey, E. Combined biological wastewater treatment with electrocoagulation as a post-polishing process: A review. Sep. Sci. Technol. 2020, 55, 2334–2352. [Google Scholar] [CrossRef]
- Telke, A.; Joshi, S.; Jadhav, S.; Shah, D.; Govindwar, S. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation 2009, 21, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Drogui, P. Electrochemical removal of microcystin-LR from aqueous solution in the presence of natural organic pollutants. J. Environ. Manag. 2013, 114, 253–260. [Google Scholar] [CrossRef] [PubMed]





| Coded Variables | Factors (Ui) | Experimental Domain | Ui,0 | ∆Ui | |
|---|---|---|---|---|---|
| Min. Value (−1) | Max. Value (+1) | ||||
| Electrooxidation | |||||
| X1 | U1: Intensity (I; A) | 1 | 2 | 1.5 | 0.5 |
| X2 | U2: Recirculation Flow Rate (RFR; mL min−1) | 10 | 30 | 20 | 10 |
| X3 | U3: ExperimentalTime (ET; min) | 60 | 140 | 100 | 40 |
| Electrocoagulation | |||||
| X1 | U1: Intensity (I; A) | 1 | 2 | 1.5 | 0.5 |
| X2 | U2: Recirculation Flow Rate (RFR; mL min−1) | 10 | 30 | 20 | 10 |
| X3 | U3: Experimental Time (ET; min) | 10 | 25 | 17.5 | 7.5 |
| Electrooxidation (EO) | Electrocoagulation (EC) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Experiment | X1 I (A) | X2 RFR (mL min−1) | X3 ET (min) | Y1 CR R (%) | Y2 COD R (%) | X1 I (A) | X2 RFR (mL min−1) | X3 ET (min) | Y1 CR D (%) | Y2 COD R (%) |
| Factorial Design | ||||||||||
| 1 | 1 | 10 | 60 | 10.87 | 42.62 | 1 | 10 | 10 | 33.33 | 28.95 |
| 2 | 1 | 10 | 140 | 63.11 | 60.65 | 1 | 10 | 25 | 37.12 | 43.43 |
| 3 | 1 | 30 | 60 | 11.28 | 45.45 | 1 | 30 | 10 | 35.12 | 30.01 |
| 4 | 1 | 30 | 140 | 67.14 | 63.93 | 1 | 30 | 25 | 38.12 | 44.7 |
| 5 | 2 | 10 | 60 | 48.28 | 47.54 | 2 | 10 | 10 | 50.9 | 33.97 |
| 6 | 2 | 10 | 140 | 84 | 83.77 | 2 | 10 | 25 | 52.9 | 52.3 |
| 7 | 2 | 30 | 60 | 55.42 | 54.09 | 2 | 30 | 10 | 49.91 | 34.91 |
| 8 | 2 | 30 | 140 | 87.42 | 90.16 | 2 | 30 | 25 | 51.21 | 52.67 |
| Center Points | ||||||||||
| 9 | 1.5 | 20 | 100 | 47.28 | 49.9 | 1.5 | 20 | 17.5 | 38.42 | 47.34 |
| 10 | 1.5 | 20 | 100 | 52.85 | 52.45 | 1.5 | 20 | 17.5 | 37.87 | 48.72 |
| 11 | 1.5 | 20 | 100 | 53.63 | 51.23 | 1.5 | 20 | 17.5 | 39.12 | 48.99 |
| 12 | 1.5 | 20 | 100 | 53.26 | 51.5 | 1.5 | 20 | 17.5 | 38.23 | 47.34 |
| 13 | 1.5 | 20 | 100 | 47.17 | 49.44 | 1.5 | 20 | 17.5 | 36.65 | 46.57 |
| 14 | 1.5 | 20 | 100 | 49.51 | 48.97 | 1.5 | 20 | 17.5 | 38.32 | 47.57 |
| Extreme Levels | ||||||||||
| 15 | 1.5 | 20 | 167.27 | 85.85 | 99 | 1.5 | 20 | 4.887 | 12.12 | 16.42 |
| 16 | 1.5 | 20 | 32.72 | 15.23 | 29.98 | 1.5 | 20 | 30.11 | 52.12 | 53.49 |
| 17 | 1.5 | 3.18 | 100 | 45.1 | 46.84 | 1.5 | 3.18 | 17.5 | 36.45 | 46.53 |
| 18 | 1.5 | 36.81 | 100 | 48.12 | 47.11 | 1.5 | 36.81 | 17.5 | 41.93 | 49.45 |
| 19 | 0.65 | 20 | 100 | 17.83 | 26.47 | 0.65 | 20 | 17.5 | 10.72 | 13.21 |
| 20 | 2.34 | 20 | 100 | 91.25 | 99 | 2.34 | 20 | 17.5 | 53.61 | 54.32 |
| Source | Analysis of Variance | ||||
|---|---|---|---|---|---|
| Sum of Square | d.f. a | Mean of Square | F-Value | Pr > F | |
| Electrooxidation | |||||
| CR R | |||||
| Model | 11,030.79 | 9 | 1838.47 | 79.73 | <0.0001 |
| X1-I | 4438.29 | 1 | 4438.29 | 192.48 | <0.0001 |
| X2-RFR | 29.52 | 1 | 29.52 | 1.28 | 0.2783 |
| X3-ET | 6354.48 | 1 | 6354.48 | 275.59 | <0.0001 |
| X1X2 | 4.68 | 1 | 4.68 | 0.21 | 0.6576 |
| X1X3 | 203.82 | 1 | 203.82 | 9.08 | 0.0130 |
| X2X3 | 0.001 | 1 | 0.001 | 0.00005 | 0.9942 |
| X12 | 57.35 | 1 | 57.35 | 2.56 | 0.1410 |
| XX2 | 9.43 | 1 | 9.43 | 0.42 | 0.5314 |
| X32 | 4.86 | 1 | 4.86 | 0.22 | 0.6517 |
| COD R | |||||
| Model | 7135.92 | 9 | 792.88 | 9.58 | 0.0008 |
| X1-I | 2503.10 | 1 | 2503.10 | 30.26 | 0.0003 |
| X2-RFR | 27.85 | 1 | 27.85 | 0.34 | 0.5746 |
| X3-ET | 3703.22 | 1 | 3703.22 | 44.76 | <0.0001 |
| X1X2 | 5.83 | 1 | 5.83 | 0.070 | 0.7960 |
| X1X3 | 160.12 | 1 | 160.12 | 1.94 | 0.1943 |
| X2X3 | 0.011 | 1 | 0.011 | 0.0001 | 0.9912 |
| X12 | 335.58 | 1 | 335.8 | 4.06 | 0.0717 |
| XX2 | 8.03 | 1 | 8.03 | 0.097 | 0.7618 |
| X32 | 427.43 | 1 | 427.43 | 5.17 | 0.0463 |
| Electrocoagulation | |||||
| CR D | |||||
| Model | 2401.06 | 9 | 266.78 | 8.81 | 0.0011 |
| X1-I | 673.40 | 1 | 673.40 | 22.23 | 0.0008 |
| X2-RFR | 5.35 | 1 | 5.35 | 0.18 | 0.6831 |
| X3-ET | 1192.28 | 1 | 1192.28 | 39.35 | <0.0001 |
| X1X2 | 0.13 | 1 | 0.13 | 0.004 | 0.9491 |
| X1X3 | 5.99 | 1 | 5.99 | 0.20 | 0.6662 |
| X2X3 | 0.016 | 1 | 0.016 | 0.0005 | 0.9820 |
| X12 | 301.86 | 1 | 301.86 | 9.96 | 0.0102 |
| XX2 | 2.95 | 1 | 2.95 | 0.097 | 0.7613 |
| X32 | 248.91 | 1 | 248.91 | 8.22 | 0.0168 |
| COD R | |||||
| Model | 1835.69 | 9 | 203.97 | 2.72 | 0.0673 |
| X1-I | 1302.31 | 1 | 1302.31 | 17.39 | 0.0019 |
| X2-RFR | 6.37 | 1 | 6.37 | 0.085 | 0.7766 |
| X3-ET | 438.23 | 1 | 438.23 | 5.85 | 0.0361 |
| X1X2 | 3.74 | 1 | 3.74 | 0.050 | 0.8277 |
| X1X3 | 1.52 | 1 | 1.52 | 0.020 | 0.8895 |
| X2X3 | 0.28 | 1 | 0.28 | 0.004 | 0.9527 |
| X12 | 0.27 | 1 | 0.27 | 0.003 | 0.9537 |
| X22 | 79.46 | 1 | 79.49 | 1.06 | 0.3273 |
| X32 | 0.33 | 1 | 0.33 | 0.004 | 0.9483 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Soto, I.C.; García-Gómez, C.; Álvarez-Valencia, L.H.; Meza-Escalante, E.R.; Leyva-Soto, L.A.; Camacho-Ruiz, M.A.; Concha-Guzmán, M.O.; Ulloa-Mercado, R.G.; Díaz-Tenorio, L.M.; Gortáres-Moroyoqui, P. Sequential Congo Red Elimination by UASB Reactor Coupled to Electrochemical Systems. Water 2021, 13, 3087. https://doi.org/10.3390/w13213087
Romero-Soto IC, García-Gómez C, Álvarez-Valencia LH, Meza-Escalante ER, Leyva-Soto LA, Camacho-Ruiz MA, Concha-Guzmán MO, Ulloa-Mercado RG, Díaz-Tenorio LM, Gortáres-Moroyoqui P. Sequential Congo Red Elimination by UASB Reactor Coupled to Electrochemical Systems. Water. 2021; 13(21):3087. https://doi.org/10.3390/w13213087
Chicago/Turabian StyleRomero-Soto, Itzel Celeste, Celestino García-Gómez, Luis Humberto Álvarez-Valencia, Edna Rosalba Meza-Escalante, Luis Alonso Leyva-Soto, Maria Angeles Camacho-Ruiz, María Olga Concha-Guzmán, Ruth Gabriela Ulloa-Mercado, Lourdes Mariana Díaz-Tenorio, and Pablo Gortáres-Moroyoqui. 2021. "Sequential Congo Red Elimination by UASB Reactor Coupled to Electrochemical Systems" Water 13, no. 21: 3087. https://doi.org/10.3390/w13213087
APA StyleRomero-Soto, I. C., García-Gómez, C., Álvarez-Valencia, L. H., Meza-Escalante, E. R., Leyva-Soto, L. A., Camacho-Ruiz, M. A., Concha-Guzmán, M. O., Ulloa-Mercado, R. G., Díaz-Tenorio, L. M., & Gortáres-Moroyoqui, P. (2021). Sequential Congo Red Elimination by UASB Reactor Coupled to Electrochemical Systems. Water, 13(21), 3087. https://doi.org/10.3390/w13213087

