Differentiated Effects of Urbanization on Precipitation in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Interannual Variation of Warm Season Precipitation in South China
3.2. Association of Spatially Differentiated Trends in Precipitation and Two Atmospheric Variables Surrounding the Three Urban Clusters
3.3. Possible Mechanisms
3.3.1. Possible Mechanisms for Stationary Warm Season Precipitation in the Chengyu Urban Cluster
3.3.2. Possible Mechanisms Leading to Decreased Precipitation in the Yangtze River Delta Urban Cluster
3.3.3. Possible Mechanisms for an Increased Precipitation Trend in the Fujian Guangdong Coast Urban Cluster
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Changnon, S.A. The La Porte weather anomaly—fact or fiction? Bull. Am. Meteorl. Soc. 1968, 49, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, H.E. Man-made climate changes. Science 1970, 170, 1265–1274. [Google Scholar] [CrossRef]
- Huff, F.A.; Changnon, S.A. Precipitation modification by major urban areas. Bull. Am. Meteorol. Soc. 1973, 54, 1220–1232. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.M.; Yan, Z.W. Potential sensitivity of warm season precipitation to urbanization extents: Modeling study in Beijing-Tianjin-Hebei urban agglomeration in China. J. Geophys. Res. Atmos. 2015, 120, 9408–9425. [Google Scholar] [CrossRef]
- Changnon, S.A.; Semonin, R.G.; Huff, F.A. A hypothesis for urban precipitation anomalies. J. Appl. Meteorol. 1976, 15, 544–560. [Google Scholar] [CrossRef] [Green Version]
- Ochs, H.T.; Semonin, R.G. Sensitivity of a cloud microphysical model to an urban environment. J. Appl. Meteorol. 1979, 18, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Pierce, H.; Negri, A.J. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteorol. 2002, 41, 689–701. [Google Scholar] [CrossRef]
- Quah, A.K.L.; Roth, M. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmos. Environ. 2012, 46, 92–103. [Google Scholar] [CrossRef]
- Zhong, S.; Yang, X.Q. Mechanism of Urbanization Impact on a Summer Cold-Frontal Rainfall Process in the Greater Beijing Metropolitan Area. J. Appl. Meteorol. Climatol. 2015, 54, 1234–1247. [Google Scholar] [CrossRef]
- Niyogi, D.; Pyle, P.; Lei, M.; Arya, S.P.; Kishtawal, C.M.; Shepherd, M.; Chen, F.; Wolfe, B. Urban Modification of Thunderstorms: An Observational Storm Climatology and Model Case Study for the Indianapolis Urban Region. J. Appl. Meteorol. Climatol. 2011, 50, 1129–1144. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, J.E.; Luo, S.M.; Zhang, J.; Li, Y. Study on coordinative development between urbanization and eco-environment in Guangdong Province. Ecol. Sci. 2012, 31, 42–47. (In Chinese) [Google Scholar]
- Wai, K.M.; Wang, X.M.; Lin, T.H.; Wong, M.S.; Zeng, S.K.; He, N.; Ng, E.; Lau, K.; Wang, D.H. Observational evidence of a long-term increase in precipitation due to urbanization effects and its implications for sustainable urban living. Sci. Total Environ. 2017, 599, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Bolen, S.M.; Chandrasekar, V. Quantitative cross validation of space-based and ground-based radar. J. Appl. Meteorol. 2000, 39, 2071–2079. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Qi, Y.C. Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J. Geophys. Res. Atmos. 2013, 118, 1896–1905. [Google Scholar] [CrossRef]
- Dou, J.J.; Wang, Y.C.; Bornstein, R.; Miao, S.G. Observed Spatial Characteristics of Beijing Urban Climate Impacts on Summer Thunderstorms. J. Appl. Meteorol. Climatol. 2015, 54, 94–105. [Google Scholar] [CrossRef]
- Ma, H.; Jiang, Z.; Jie, S.; Dai, A.; Fei, H. Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model. Clim. Dyn. 2016, 46, 2977–2989. [Google Scholar] [CrossRef]
- Song, X.M.; Zhang, J.Y.; AghaKouchak, A.; Roy, S.S.; Xuan, Y.Q.; Wang, G.Q.; He, R.M.; Wang, X.J.; Liu, C.S. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. J. Geophys. Res. Atmos. 2014, 119, 11250–11271. [Google Scholar] [CrossRef] [Green Version]
- Thielen, J.; Wobrock, W.; Gadian, A.; Mestayer, P.G.; Creutin, J.D. The possible influence of urban surfaces on rainfall development: A sensitivity study in 2D in the meso-gamma-scale. Atmos. Res. 2000, 54, 15–39. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Z.Q.; Wang, X.M.; Chen, Y. Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor. Appl. Climatol. 2010, 102, 331–342. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.M.; Yan, Z.W.; Hu, Y.H.; Jia, G.S. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J. Geophys. Res. Atmos. 2012, 117, D21103. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.S.; Fu, Y.F. The characteristics of Tropical precipitation profiles as inferred from satellite radar measurements. J. Meteorol. Soc. Jpn. 2001, 79, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Kodama, Y.M.; Tamaoki, A. A re-examination of precipitation activity in the subtropics and the mid-latitudes based on satellite-derived data. J. Meteorol. Soc. Jpn. 2002, 80, 1261–1278. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.F.; Lin, Y.H.; Liu, G.S.; Wang, Q. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv. Atmos. Sci. 2003, 20, 511–529. [Google Scholar]
- Schumacher, C.; Houze, R.A. Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Clim. 2003, 16, 1739–1756. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A.; Kraucunas, I. The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci. 2004, 61, 1341–1358. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, C.; Houze, R.A. Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Q. J. R. Meteorol. Soc. 2006, 132, 2235–2255. [Google Scholar] [CrossRef]
- Yamamoto, M.K.; Furuzawa, F.A.; Higuchi, A.; Nakamura, K. Comparison of diurnal variations in precipitation systems observed by TRMM PR, TMI, and VIRS. J. Clim. 2008, 21, 4011–4028. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Chen, G.; Sha, W.; Wang, B. Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China. Environ. Res. Lett. 2011, 6, 034020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Smith, J.A.; Luo, L.F.; Wang, Z.F.; Baeck, M.L. Urbanization and Rainfall Variability in the Beijing Metropolitan Region. J. Hydrometeorol. 2014, 15, 2219–2235. [Google Scholar] [CrossRef]
- Mcleod, J.; Shepherd, M.; Konrad, C.E. Spatio-temporal rainfall patterns around Atlanta, Georgia and possible relationships to urban land cover. Urban Clim. 2017, 21, 27–42. [Google Scholar] [CrossRef]
- Changnon, S.A. Precipitation changes in summer caused by St. Louis. Science 1979, 205, 402–404. [Google Scholar] [CrossRef]
- Sanderson, M.; Gorski, R. The effect of metropolitan Detroit–Windsor on precipitation. J. Appl. Meteorol. 1978, 17, 423–427. [Google Scholar] [CrossRef] [Green Version]
- Huff, F.A.; Vogel, J.L. Urban, topographic and diurnal effects on precipitation in the St. Louis region. J. Appl. Meteorol. 1978, 17, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Braham, R.R.; Dungey, M.J. A Study of Urban Effects on Radar First Echoes. J. Appl. Meteorol. 1978, 17, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Dixon, P.G.; Mote, T.L. Patterns and causes of Atlanta′s urban Heat Island–initiated precipitation. J. Appl. Meteorol. 2003, 42, 1273–1284. [Google Scholar] [CrossRef]
- Jauregui, E.; Romales, E. Urban effects on convective precipitation in Mexico City. Atmos. Environ. 1996, 30, 3383–3389. [Google Scholar] [CrossRef]
- Xu, Y.P.; Xu, J.T.; Ding, J.J.; Chen, Y.; Yin, Y.X.; Zhang, X.Q. Impacts of urbanization on hydrology in the Yangtze River Delta, China. Water Sci. Technol. 2010, 62, 1221–1229. [Google Scholar]
- Craig, K.J. MM5 simulations of urban-induced convective precipitation over Atlanta, Georgia. Dr. Diss. San Jose State Univ. 2002. [Google Scholar] [CrossRef]
- Van Den Heever, S.C.; Cotton, W.R. Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol. 2007, 46, 828–850. [Google Scholar] [CrossRef]
- Hjelmfelt, M.R. Numerical simulation of the effects of St. Louis on mesoscale boundary-layer airflow and vertical air motion: Simulations of urban vs non-urban effects. J. Appl. Meteorol. 1982, 21, 1239–1257. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, J.M.; Carter, M.; Manyin, M.; Messen, D.; Burian, S. The impact of urbanization on current and future coastal precipitation: A case study for Houston. Environ. Plan. B Plan. Des. 2010, 37, 284–304. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Chen, W.C.; Liu, S.C.; Liou, Y.A.; Liu, G.R.; Lin, T.H. Numerical study of the impact of urbanization on the precipitation over taiwan. Atmos. Environ. 2008, 42, 2934–2947. [Google Scholar] [CrossRef]
- Zhong, S.; Yun, Q.; Zhao, C.; Leung, R.; Liu, D. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze river delta region of china. Atmos. Chem. Phys. 2017, 17, 5439–5457. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, I.; Kaval, J. Day-of-the week variation of precipitation and maximum temperature in Melbourne, Australia. Arch. Meteorol. Geophys. Bioclimatol. Ser. B Theor. Appl. Climatol. 1986, 36, 317–330. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Seto, K.C.; Schneider, A.; Liu, Z.; Zhou, L.; Wang, W. Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Clim. 2007, 20, 2299–2306. [Google Scholar] [CrossRef]
- Changnon, S.A. Urban modification of freezing-rain events. J. Appl. Meteorol. 2003, 42, 863–870. [Google Scholar] [CrossRef]
- Givati, A.; Rosenfeld, D. Quantifying precipitation suppression due to air pollution. J. Appl. Meteorol. 2004, 43, 1038–1056. [Google Scholar] [CrossRef]
- Guo, X.; Fu, D.; Wang, J. Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmos. Res. 2006, 82, 112–126. [Google Scholar] [CrossRef]
- Zhang, C.L.; Chen, F.; Miao, S.G.; Li, Q.C.; Xia, X.A.; Xuan, C.Y. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res. Atmos. 2009, 114, D02116. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.M.; Yan, Z.W. Impact of Extensive Urbanization on Summertime Rainfall in the Beijing Region and the Role of Local Precipitation Recycling. J. Geophys. Res. Atmos. 2018, 123, 3323–3340. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Dai, J.; Yu, X.; Yao, Z.; Xu, X.; Yang, X.; Du, C. Inverse relations between amounts of air pollution and orographic precipitation. Science 2007, 315, 1396–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xiao, J.; Ju, W.; Liu, Y.; Xiao, J.; Ju, W.; Xu, K.; Zhao, Y. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 2016, 11, 094010. [Google Scholar] [CrossRef]
- Xiao, J.F.; Moody, A. Trends in vegetation activity and their climatic correlates: China 1982 to 1998. Int. J. Remote Sens. 2004, 25, 5669–5689. [Google Scholar] [CrossRef]
- Park, H.S.; Sohn, B.J. Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. J. Geophys. Res. Atmos. 2010, 115, D14101. [Google Scholar] [CrossRef]
- Chen, B.; Xu, G.; Coops, N.C.; Ciais, P.; Innes, J.L.; Wang, G.; Myneni, R.B.; Wang, T.; Krzyzanowski, J.; Li, Q.; et al. Changes in vegetation photosynthetic activity trends across the asia–pacific region over the last three decades. Remote Sens. Environ. 2014, 144, 28–41. [Google Scholar] [CrossRef]
- Xiao, J.F.; Zhou, Y.; Zhang, L. Contributions of natural and human factors to increases in vegetation productivity in China. Ecosphere 2015, 6, 233. [Google Scholar] [CrossRef]
- Bin, C.; Xiang-De, X.; Tianliang, Z. Main moisture sources affecting lower Yangtze River Basin in boreal summers during 2004-2009. Int. J. Climatol. 2013, 33, 1035–1046. [Google Scholar] [CrossRef]
- Li, L.; Dolman, A.J.; Xu, Z. Atmospheric Moisture Sources, Paths, and the Quantitative Importance to the Eastern Asian Monsoon Region. J. Hydrometeorol. 2016, 17, 637–649. [Google Scholar] [CrossRef]
- Zhou, T.J.; Yu, R.C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. Atmos. 2005, 110, D08104. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, H.; Becker, S.; King, L. Predicting summer rainfall in the Yangtze River Basin with neural networks. Int. J. Climatol. 2008, 28, 925–936. [Google Scholar] [CrossRef]
- Shi, P.J.; Sun, S.; Wang, M.; Li, N.; Wang, J.A.; Jin, Y.Y.; Gu, X.T.; Yin, W.X. Climate change regionalization in China (1961–2010). Sci. China-Earth Sci. 2014, 57, 2676–2689. [Google Scholar] [CrossRef]
- Huff, F.A.; Changnon, S.A. Climatological assessment of urban effects on precipitation at St. Louis. J. Appl. Meteorol. 1972, 11, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Hagemeyer, B.C. A lower-tropospheric thermodynamic climatology for March through September: Some implications for thunderstorm forecasting. Weather Forecast. 1991, 6, 254–270. [Google Scholar] [CrossRef] [Green Version]
- Changnon, S.A.; Shealy, R.T.; Scott, R.W. Precipitation Changes in Fall, Winter, and Spring Caused by St. Louis. J. Appl. Meteorol. 1991, 30, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H.; Sun, Y.; Wang, Z.Y.; Zhu, Y.X.; Song, Y.F. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int. J. Climatol. 2009, 29, 1926–1944. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S. Regional characteristics of long-term changes in total and extreme precipitations over China and their links to atmospheric-oceanic features. Int. J. Climatol. 2017, 37, 751–769. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.W.; Wang, J.; Xia, J.J.; Feng, J.M. Review of recent studies of the climatic effects of urbanization in China. Adv. Clim. Chang. Res. 2016, 7, 154–168. [Google Scholar] [CrossRef]
- Dee De, R.P. Uppala, Simmons, Vitart. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Chang, A.T.C.; Chiu, L.S. Nonsystematic Errors of Monthly Oceanic Rainfall Derived from SSM/I. Mon. Weather Rev. 2000, 127, 1630–1638. [Google Scholar] [CrossRef]
- Bell, T.L.; Kundu, P.K.; Kummerow, C.D. Sampling Errors of SSM/I and TRMM Rainfall Averages: Comparison with Error Estimates from Surface Data and a Simple Model. J. Appl. Meteorol. 2001, 40, 938–954. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, K.; Nakazawa, T. Systematic Differences between TRMM 3G68 PR and TMI Rainfall Estimates and the Possible Association with Life Cycle of Convection. Sola 2005, 1, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.; Back, L.E.; O′Gorman, P.A.; Emanuel, K.A. A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett. 2009, 36, L16804. [Google Scholar] [CrossRef]
- Lo, J.; Lau, A.; Chen, F.; Fung, J.; Leung, K. Urban modification in a mesoscale model and the effects on the local circulation in the Pearl River Delta region. J. Appl. Meteorol. Climatol. 2007, 46, 457–476. [Google Scholar] [CrossRef] [Green Version]
Factors | The Linear Fitting Equation |
---|---|
Warm-season rainfall (mm·mon−1) | y = −0.33t + 142.0 |
Building completed area (106 m2) | y = 401.83t + 2013.1 |
Urban population of selected cities (104 persons) | y = 133.94t + 10021.0 |
Urban Clusters | Chenyu | The Yangtze River Delta | Fujian Guangdong Coast |
---|---|---|---|
Rain trend (mm·mon−1·year−1) | −3–6 | −6–−3 | 3–6 |
convective precipitation (mm·mon−1·year−1) | −2–2 | −2–0 | 0–4 |
non-convective precipitation (mm·mon−1·year−1) | −3–3 | −6–0 | 0–6 |
CAPE (J·kg−1·year−1) | −5–5 | −5–5 | 5–10 |
TCWV (kg·m−2·year−1) | −0.05–0.05 | 0.05–0.1 | 0.05–0.1 |
Skin-temperature (°C·year−1) | 0–0.12 | 0.03 | 0.03 |
Sensible heat flux (W·m−2·year−1) | 0–1.0 | 0.2–0.4 | 0–0.2 |
Boundary layer height (m·year−1) | 0–18 | 2–4 | −2 |
Evaporation (Kg·m−2·s·year−1) | −1–2 | −1 | 1–2 |
1000 hPa specific humidity (kg·kg−1·year−1) | −3–2 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Zhang, G.; Xu, J. Differentiated Effects of Urbanization on Precipitation in South China. Water 2021, 13, 1386. https://doi.org/10.3390/w13101386
Fan L, Zhang G, Xu J. Differentiated Effects of Urbanization on Precipitation in South China. Water. 2021; 13(10):1386. https://doi.org/10.3390/w13101386
Chicago/Turabian StyleFan, Lingli, Guangya Zhang, and Jianjun Xu. 2021. "Differentiated Effects of Urbanization on Precipitation in South China" Water 13, no. 10: 1386. https://doi.org/10.3390/w13101386
APA StyleFan, L., Zhang, G., & Xu, J. (2021). Differentiated Effects of Urbanization on Precipitation in South China. Water, 13(10), 1386. https://doi.org/10.3390/w13101386