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Abstract: In this paper, precipitation data from the Tropical Rainfall Measuring Mission (TRMM),
together with atmospheric reanalysis data, are employed to identify warm-season precipitation
(1998–2014) changes and their association with rapid urbanization in south China. Three urban
clusters (Chenyu, Yangtze Delta, and Fujian Guangdong coast) are focused. The results reveal that,
for the inland Chengyu urban cluster, a lack of precipitation trend is likely due to insignificant trends
in convective available potential energy (CAPE) and total column water vapor (TCWV). They are
likely resulted from a reduced local moisture recycling in urban areas, balanced by an increased
evapotranspiration of rural areas, together with a stable advection of water vapor input. For the
Yangtze River Delta urban cluster, a negative trend in precipitation is associated with a slightly
decreased CAPE and an increased TCWV, but is very likely related to urbanization induced an
increased planetary boundary layer (PBL) and reduced land surface evaporation. For the Fujian
Guangdong coast urban cluster, a marked positive precipitation trend is well explained by positive
trends in CAPE and TCWV. The increased precipitation likely benefits from enhanced moisture
recycling due to improved vegetation cover in rural areas, and enhanced advection moisture inputs
due to urbanization along the coast. These results suggest urbanization effects on precipitation vary
with regional conditions. In the coastal area, urbanization enhances sea breezes, which may benefit
precipitation if sea breezes go along with the prevailing moisture. In inland area, urbanization likely
leads to a warmer-dryer climate if large-scale land cover keeps stationary.

Keywords: urbanization; warm season precipitation; regional differentiation; south China

1. Introduction

At present, 55% of the world’s population resides in urban areas. The urban popu-
lation is expected to reach 68% by 2050 (the Population Division of the UN DESA, 2018).
Urbanization’s effect on precipitation has been recognized for four decades [1–3]. Such
effects are receiving increasing attention because they may exacerbate torrential rain, which
threatens urban societies [4]. Previous studies suggest that urban-induced changes in
precipitation processes most likely result from one or more of the following five mecha-
nisms [5–10]: (1) atmospheric destabilization through influences of mesoscale circulation,
(2) increased low-level convergence due to surface roughness, (3) modification of micro-
physical and dynamic processes by the addition of aerosols, (4) modification of low-level
atmospheric moisture content, and (5) large structures create a bifurcation zone that steers
storms around cities. These mechanisms potentially have either positive or negative effects
on precipitation processes depending on the available moisture in the environment.

Numerous investigations of urbanization impact on precipitation are based on sta-
tistical analysis of rain gauge networks [11–13], ground-based radar [14–16], or model
simulations [17–21]. Some authors have applied remote-sensing data (Tropical Rainfall
Measuring Mission precipitation data, TRMM) to identify patterns in warm-season pre-
cipitation anomalies around cities [22–31]. Although useful, these studies are limited to
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specific cities with special observation networks, theoretical model simulations, or mainly
focused on representative events.

Many previous studies have shown that urbanization leads to increased precipitation
during the warm-season months. It was shown that the areal extent and magnitude of
downwind precipitation anomalies are related to the sizes of the urban area [1,32–39].
Numerical model simulations are consistent with the anomalies found from observational
studies [40–44].

However, some other studies have shown that the urbanization effect is negligible
in precipitation formation [41,45,46]. A negative urbanization effect on precipitation has
been reported in some studies [47–52]. In one study, this effect has been attributed to
urban-induced changes in regional surface hydrology [51]. These different conclusions
suggest that the urbanization effects on precipitation may vary with local climate settings
and land cover conditions.

Thus, further studies are necessary to quantify the urban effect on precipitation over
urban clusters located in different geographic and climatic conditions around the world.
South China is one area with rapid urbanization in the last two decades. Simultaneously,
vegetation cover in the rural areas has significantly changed [53–58]. In this study we
aim to investigate the possible impacts of rapid urbanization on precipitation in South
China. The research questions are (1) whether warm season precipitation in South China
has experienced observable changes in recent decades; and (2) whether these precipitation
trends (if exist) are associated with urbanization.

It is necessary to briefly introduce the studied region. The region covers most of South
China (100.0–125.5◦ E, 18.5–35.0◦ N) urban clusters (Figure 1a). The main moisture sources
in warm season of this region and its surroundings are the South China Sea, the Bay of
Bengal, and the western Pacific Ocean [58–60].

The study region covers most of South China, which has experienced rapid develop-
ment since early 1990s. Three urban clusters are representative for the urbanization in the
recent decades in China. The Chengyu urban cluster (Figure 1b) is located in the southwest
of China, the red rectangle marks it in Figure 1a. The landform features rugged mountains
and valleys. It has a subtropical monsoon humid climate, with a hot summer and a warm
winter. The mean annual precipitation is about 1200 mm. Precipitation primarily occurs
from June to August, accounting for 70% of the annual precipitation.

The Yangtze River Delta urban cluster (Figure 1c) is located in the coast of the East
China Sea, the orange rectangle marks it in Figure 1a. The landform mainly features a
low and flat plain with relatively high density of surface water bodies. It is significantly
influenced by humid subtropical monsoon circulation, with a mean annual precipitation of
about 1100 mm. Summer is the main rainy season [61].

The Pearl River Delta urban cluster and the West Coast of the Taiwan Strait urban
cluster (Figure 1d, in this paper, it is called the Fujian Guangdong coast urban cluster) are
located in the southeastern coast of China; the blue rectangle marks it in Figure 1a. The
landform mainly features a middle and low mountains-delta plain. It has a typical marine
subtropical monsoon climate. It receives on average about 1000–2000 mm of precipitation
per year. Most of it occurs in warm season (April–September).

According to the climate change regionalization in China (1961–2010) [62], the Chengyu
cluster belongs to the Southwest China–South China dry-warm trend zone, the Yangtze
River Delta urban cluster is part of the East China–Central China wet-warm trend zone,
the Fujian Guangdong coast cluster belongs to the East China–Central China wet-warm
trend zone too.
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Figure 1. Distribution of cities with population over one million in 2016: (a) South China, (b) the Chengyu, (c) the Yangtze 
River Delta, and (d) Fujian Guangdong coast urban cluster. (e) Mean 700 hPa horizontal wind (m·s−1, May–September) 
based on ECMWF reanalysis dataset from 1998 to 2014. The solid dots indicate the cities with population over one million 
in 2016. 

As the urban effects on precipitation appear to be different between upwind and 
downwind to the urban area [8,42,63], the mean May–September 700 hPa horizontal wind 
during 1998–2014 (the study period) is analyzed, summarized in Figure 1e. The 700 hPa 
level is chosen as the representative level for the mean steering flow, following previous 
studies [64]. Southwesterly winds prevail in the South China during the warm-season, 
which is associated with the East Asian summer monsoon system. 

Figure 1. Distribution of cities with population over one million in 2016: (a) South China, (b) the Chengyu, (c) the Yangtze
River Delta, and (d) Fujian Guangdong coast urban cluster. (e) Mean 700 hPa horizontal wind (m·s−1, May–September)
based on ECMWF reanalysis dataset from 1998 to 2014. The solid dots indicate the cities with population over one million
in 2016.

As the urban effects on precipitation appear to be different between upwind and
downwind to the urban area [8,42,63], the mean May–September 700 hPa horizontal wind
during 1998–2014 (the study period) is analyzed, summarized in Figure 1e. The 700 hPa
level is chosen as the representative level for the mean steering flow, following previous
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studies [64]. Southwesterly winds prevail in the South China during the warm-season,
which is associated with the East Asian summer monsoon system.

The urban effects are most pronounced during warm-season months [37,63,65]. Warm-
season precipitation over China is significantly correlated with the convergence of the water
vapor transport and deep convections [66–68]. During the warm season, the urbanization-
induced mesoscale circulation is more prominent and can significantly alter boundary layer
processes. Thus, the present study focuses on the warm-season months (May–September)
of 1998–2014, because the available TRMM rain data just cover a period of 1998–2014.

2. Materials and Methods
2.1. Data

Monthly atmospheric datasets, including convective available potential energy (CAPE),
total column water vapor (TCWV), are obtained from the European Centre for Medium-
Range Weather Forecasts (ECMWF, https://apps.ecmwf.int/datasets/data/interim-full-
moda/levtype=sfc/, accessed on 20 February 2019). The data have a resolution of 0.125◦ *0.125◦

(about 12.5 km), and cover a period of 1979–2019 [69]. Data of hourly surface rain rate (unit:
mm·h-1) are obtained from the TRMM 3G68 (hereafter referred to as PR 3G68) dataset,
provided by GSFC/NASA (Goddard Space Flight Center, National Aeronautics and Space
Administration, ftp://trmmopen.gsfc.nasa.gov/pub, accessed on 20 February 2019). It is
a gridded product that combines the TRMM satellite Precipitation Radar (PR), TRMM Mi-
crowave Imager (TMI) and TRMM combined instrument at 0. 5◦ *0. 5◦ (about 50 km) and
hourly resolution,1998–2014. The rainfall rate also includes total rainfall from each instru-
ment and convective rainfall and convective fraction. Because the data are gridded hourly
and put in a daily file, there are a lot of hours with missing data due to satellite sampling,
the percent of sampling error are higher for low rain rate than high rain rate [70–72]. The
GIMMS 3g NDVI v1 dataset provided by ECOCAST (NASA Ames Ecological Forecasting
Lab, https://ecocast.arc.nasa.gov/data/pub/gimms/, accessed on 20 February 2019), at
1/12◦ × 1/12◦ and 15-days resolution, 1981–2015.

2.2. Methods

Although the TRMM dataset is not sufficient to establish true climatological behavior,
the 17-year period, overlapped with the rapid urbanization in South China, allows for the
investigation of anomalies in precipitation associated with urban effects. The analysis is
primarily conducted based on hourly precipitation rates (mm·h−1) in 0.5◦ × 0.5◦ cells.

For more detailed analysis, mean surface precipitation rates at each grid point are
calculated for the months of May, June, July, August, and September. For a given grid cell,
hourly surface precipitation rates are averaged for the five warm-season months. This
average hourly rain rate is multiplied by (24 h × 30/31 days × 5 months) to obtain the
warm-season precipitation of the grid cell for the year. This procedure is repeated for
each of the 17 years, resulting in a 17-year time series of warm season precipitation for
1998–2014.

The possible relationship between precipitation trend and urbanization in South China
is analyzed as follows. Firstly, the 17-year warm season precipitation is examined for trends.
Secondly, the variability of atmospheric parameters is examined to explain the precipitation
trends (if there are). Thirdly, possible connections between these mechanisms and the
urbanization are examined.

3. Results
3.1. Interannual Variation of Warm Season Precipitation in South China

No obvious pattern of any trend of the spatially average warm-season precipitation
occurs over South China during 1998–2014, while the population density and urban built-up
area, represented by the selected cities increase rapidly (Table 1). Nevertheless, the precipi-
tation trends are observed in subregions. The maximum trend of warm-season precipitation
(3–6 mm·mon−1·year−1, Figure 2a) distributes in the downwind and surrounding areas

https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
ftp://trmmopen.gsfc.nasa.gov/pub
https://ecocast.arc.nasa.gov/data/pub/gimms/
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of the Fujian Guangdong coast cluster (Figure 1e). This confirms previous research result:
an increasing trend of precipitation existed at the Pearl River Delta [12,13]. Warm-season
rainfall decreases over the Chengyu urbanized areas (Figure 2a,−3 mm·mon−1·year−1) and
increases slightly in its downwind areas (Figure 2a, 0–3 mm·mon−1·year−1). Precipitation
decreases over the Yangtze River Delta urban cluster (Figure 2a, −3 mm·mon−1·year−1).
Both convective (Figure 2b, 0–6 mm·mon−1·year−1) and non-convective precipitation (Fig-
ure 2c, 3–9 mm·mon−1·year−1) increases in the area associated with the Fujian Guangdong
coast urban cluster. The convective rain (Figure 2b, −3–3 mm·mon−1·year−1) appears to
be stable, while non-convective rain (Figure 2c, −6–0 mm·mon−1·year−1) decreases over
the Chengyu urbanization area. For the downwind rural area, both convective (Figure 2b,
0–3 mm·mon−1·year−1) and no-convective precipitation (Figure 2c, 3–6 mm·mon−1·year−1)
increase slightly. Both convective (Figure 2b, −3 mm·mon−1·year−1) and non-convective
precipitation (Figure 2c, −6–−3 mm·mon−1·year−1) decreases over the Yangtze River Delta
urban cluster.

Table 1. Linear regression between the relevant factors and Year.

Factors The Linear Fitting Equation

Warm-season rainfall (mm·mon−1) y = −0.33t + 142.0
Building completed area (106 m2) y = 401.83t + 2013.1

Urban population of selected cities (104 persons) y = 133.94t + 10021.0
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The convective precipitation percentage (CPP) slightly increases in the Fujian
Guangdong coast cluster (Figure 2d, 0.1–0.3%·year−1). The increase of CPP over the
Chengyu urbanization area (Figure 2d, 0.3–0.5%·year−1) is more evident than its rural
area (Figure 2d, 0.1–0.2%·year−1). The CPP shows a decreasing trend over the Yangtze
River Delta urban cluster (Figure 2d, −0.2%·year−1). Nevertheless, warm season convec-
tive and non-convective precipitation appears to have similar trends during the study
period (Figure 2b,c, Table 2).

Table 2. The trend of rain, CAPE, TCWV, skin-temperature, sensible heat flux, boundary layer height,
evaporation, 1000 hPa specific humidity in warm season during 1998 to 2014.

Urban Clusters Chenyu The Yangtze River
Delta

Fujian Guangdong
Coast

Rain trend
(mm·mon−1·year−1) −3–6 −6–−3 3–6

convective precipitation
(mm·mon−1·year−1) −2–2 −2–0 0–4

non-convective
precipitation

(mm·mon−1·year−1)
−3–3 −6–0 0–6

CAPE (J·kg−1·year−1) −5–5 −5–5 5–10
TCWV (kg·m−2·year−1) −0.05–0.05 0.05–0.1 0.05–0.1

Skin-temperature
(◦C·year−1) 0–0.12 0.03 0.03

Sensible heat flux
(W·m−2·year−1) 0–1.0 0.2–0.4 0–0.2

Boundary layer height
(m·year−1) 0–18 2–4 −2

Evaporation
(Kg·m−2·s·year−1) −1–2 −1 1–2

1000 hPa specific
humidity

(kg·kg−1·year−1)
−3–2 2 2

3.2. Association of Spatially Differentiated Trends in Precipitation and Two Atmospheric Variables
Surrounding the Three Urban Clusters

Precipitation is a product of condensation of the atmospheric water vapor, in which the
atmospheric instability and convection play a significant role. The CAPE is a good indicator
for atmospheric instability and convection [30,51]. Previous studies have shown a tight
relationship between precipitation and TCWV as well [68,73]. To examine the associated
physical mechanisms leading to the precipitation trends observed in surrounding the three
urban clusters, variations in CAPE and TCWV are first examined.

The spatially distributed CAPE and TCWV trends are shown in Figure 3 and Table 2
The overall northeast-southwest oriented zone of both negative CAPE and TCWV trends
explain the slightly negative trend of warm season precipitation in these areas of South China
(Figure 2). The area with both positive CAPE (Figure 3a, 5~10 J·kg−1·year−1) and TCWV
(Figure 3b, 0.05~0.1 kg·m−2·year−1) trends coincidently delineates the upward trend of warm
season precipitation downwind from the Fujian Guangdong coast urban cluster. For Chengyu
urban cluster, no marked trend in precipitation is likely because the insignificant trends in
CAPE (Figure 3a, −5~5 J·kg−1·year−1) and TCWV (Figure 3b, −0.05~0.05 kg·m−2·year−1).
For Yangtze River Delta urban cluster, negative trend in precipitation, which is not explained
well by a slightly negative CAPE trend (Figure 3a,−5~5 J·kg−1·year−1) but slightly positive
TCWV trend (Figure 3b, 0.05~0.1 kg·m−2·year−1).
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3.3. Possible Mechanisms

From Section 3.2, it seems that the overall the spatially differentiated warm season
precipitation trends in South China are associated with the trends in CAPE and TCWV.
Whether and how the urbanization in South China has contributed to these trends remain
to be seen. If urbanization has an influence, it must realize through modifying the surface
and low atmosphere conditions. Figure 4 and Table 2 show the changes in the surface and
lower atmosphere during warm-season of 1998–2014 in South China. The urbanization
effects on skin temperature are clear. The maximum trend value of warm-season skin-
temperature is 0.12 ◦C·year−1 (Figure 4a), occurs in Chengyu urbanized areas. The trend
of the Yangtze River Delta urban cluster and the Fujian Guangdong coast urban cluster
are around 0.03 ◦C·year−1, which is close to the results of previous studies based on
model simulation [20,21]. Our research, based on remote-sensing data, classify and discuss
the possible mechanisms of urban effect on precipitation under different geographic and
climatic conditions.

3.3.1. Possible Mechanisms for Stationary Warm Season Precipitation in the Chengyu
Urban Cluster

Over and upwind of Chengyu urbanized areas, there are significant trends of
skin-temperature (0.12 ◦C·year−1, Figure 4a), sensible heat flux (0.4–1.0 W·m−2·year−1,
Figure 4b) and PBL height (2–18 m·year −1, Figure 4c), decreased evaporation (−1× 10−7

Kg·m−2·s·year−1, Figure 4d), decreased 1000 hPa specific humidity (Figure 4e, −3 × 10−5

kg·kg−1), and CAPE (Figure 3a, −5 J·kg−1·year−1). In the downwind of Chengyu urban
cluster, the trends of skin-temperature (0–0.06 ◦C·year−1, Figure 4a), sensible heat flux
(0–0.4 W·m−2·year−1, Figure 4b) and PBL height (0–2 m·year−1, Figure 4c) are insignif-
icant, with a slightly increased evaporation (0–2 × 10−7 Kg·m−2·s·year−1, Figure 4d),
1000 hPa specific humidity (Figure 4e, 0–2 × 10−5 kg·kg−1), and an insignificant trend
in CAPE (Figure 3a, −5~5 J·kg−1·year−1). For this urban cluster, urban precipitation
has decreased slightly, while the rural areas experienced a small increasing precipita-
tion. During the same period, no significant change in large-scale advection of water
vapor input has occurred to the region (Figure 4f). These can be explained by, in the
marked urban areas, the decreased annual maximum Normalized Difference Vegetation
Index (NDVI, Figure 5, −50–0 index·year−1) leads an enhanced skin-temperature, an
increased sensible heat flux and a higher PBL, and hence the water vapor to be mixed
more evenly in a larger thickness in the lower atmosphere. The decreased evaporation
associated with a higher PBL leads to a decreased 1000 hPa specific humidity, which
reduces latent heat release with air masses upward motion. Reduced local moisture recy-
cling in the urban cluster, contributes to reducing CAPE. For the rural areas downwind
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from this urban cluster, local moisture recycling increases (including evaporation and
TCWV) likely associated with improved vegetation cover in the rural China in recent
decades [29,54,56], an increased trend of annual maximum NDVI in this rural area (Fig-
ure 5, 50–100 ndvi·year−1). Thus, the overall insignificant precipitation trend over this
urban cluster and its downwind area is likely supported by little change in large-scale
circulation (Figure 4f), and the offset between reduced urban moisture recycling and
increased rural evapotranspiration.
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3.3.2. Possible Mechanisms Leading to Decreased Precipitation in the Yangtze River Delta
Urban Cluster

Over the Yangtze River Delta urban cluster, the results indicate an increased skin-
temperature (around 0.03 ◦C·year−1, Figure 4a), sensible heat flux (0.2–0.4 W·m−2·year−1,
Figure 4b), and a PBL height (2–4 m·year−1, Figure 4c). They together explain a slightly
decreased CAPE. An increased TCWV is supported by an increased 1000 hPa specific
humidity (2 × 10−5 kg·kg−1, Figure 4e), but not by a decreased evaporation (around
−1 × 10−7 Kg·m−2·s·year−1, Figure 4d).

The negative trend in precipitation, is not explained well by a slightly decreased CAPE
and increased TCWV. Nevertheless, it is consistent with an increased PBL, reduced land
surface evaporation. The reduced local moisture recycling is associated with urbanization in
this area, reduced annual maximum NDVI (Figure 5, −50–0 ndvi·year−1), this is consistent
with the result of the cited literature [57]. In addition, the urbanization has led to a slightly
increased land-sea 1000–925 hPa average temperature difference (−0.01–0.01 ◦C·year−1

over sea and 0.01–0.02 ◦C·year−1 over land, Figure 6), which likely has enhanced sea
breezes in the daytime. However, the sea breezes may go against synoptic prevailing
moisture direction. Their impact on precipitation is not clear. Thus, very likely the observed
negative precipitation trend in the Yangtze River Delta is mostly likely associated with
urbanization induced an increased PBL, and a reduced land surface evaporation.

3.3.3. Possible Mechanisms for an Increased Precipitation Trend in the Fujian Guangdong
Coast Urban Cluster

For Fujian Guangdong coast urban cluster, consistent trends have occurred in the study
period, including slightly increased skin-temperature (0.03 ◦C·year−1, Figure 4a), sensible heat
flux (0.0–0.2 W·m−2·year−1, Figure 4b), surface evaporation (1–2 × 10−7 Kg·m−2·s·year−1,
Figure 4d) and 1000 hPa specific humidity (Figure 4e, 2 × 10−5 kg·kg−1), while a decreased
PBL height (−2 m·year−1, Figure 4c). A decreased PBL height and an increased surface
evaporation, contributes to a positive trend in CAPE and TCWV. They together explain the
observed increased precipitation in the study period.
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The reduced PBL and increased local moisture inputs are unlikely related to urban-
ization, but more likely associated with an improved annual maximum NDVI (Figure 5,
0–50 ndvi·year−1), vegetation cover improved in this region [53,55,57]. Local positive feed-
back provides a favorable moisture environment. Nevertheless, the urbanization leads to an
increased land-sea 1000–925 hPa average temperature gradient (0.01–0.02 ◦C·year−1 over sea
and 0.03–0.04 ◦C·year−1 over land, Figure 6) [74], enhancing sea breezes. The direction of
sea breezes in this region, partly along with the prevailing wind (Figure 4f), likely increases
advective moisture input to the area.

Thus, the increased precipitation in this urban cluster is likely benefitted from en-
hanced moisture recycling due to an improved vegetation cover in the rural areas, and
enhanced adjective moisture inputs due to urbanization along the coast.

4. Discussion

Based on the above discussion, we conceptualize the possible mechanisms for different
precipitation trends at the three urban clusters (Figure 7).

In the Chenyu cluster, the urbanization has led to a reduced moisture recycling and
an elevated PBL. Both tend to reduce CAPE and TCWV. These effects, however, are offset
by increasing moisture recycling in the mountainous rural areas where vegetation cover
have greatly improved in recent decades [29,54,56]. Thus, overall, no marked warm season
precipitation trend is observed. Should there be no vegetation cover improvement in rural
area, the urbanization in this inland region, would likely become warmer and dryer.

In the Yangtze River Delta cluster, urbanization has diffused into the whole area, lead-
ing to a reducing local moisture recycling, and an elevated PBL. Both contributes to a lower
CAPE. Southerly anomaly of moisture input may slightly strengthen large scale moisture
inputs to the region for precipitation. This enhancement may have contributed to surface
specific humidity and TCWV, but this has not translated to an increased precipitation,
likely limited by a slightly negative CAPE trend.
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In the Fujian Guangdong coast cluster, urbanization enhanced land-sea thermal contrast
has likely induced stronger sea breezes. Meanwhile, local moisture recycling is enhanced
resulting from improved vegetation cover in the rural mountainous regions [53,55,57]. Both
processes have resulted in positive trends in TCWV and CAPE. They together explain the
positive warm season precipitation trend.

Both along the coast, the Fujian Guangdong cluster area has seen an increase pre-
cipitation, while Yangtze River Delta has a slightly decrease trend. Two differences may
provide the explanation. First, the Fujian Guangdong cluster is surrounded by a large
area of mountainous landscapes where vegetation cover has greatly improved in recent
decades [53,55,57], enhancing local moisture recycling, while this has not occurred the
flat areas surrounding Yangtze River Delta [57]. Second, the urbanization enhanced sea
breezes, tend to go along with the prevailing moisture direction for the Fujian Guangdong
cluster, while against the prevailing moisture direction for the Yangtze River Delta cluster.

5. Conclusions

Using a 17-year warm season analysis of hourly rainfall rates from the TRMM 3G68 PR,
we have examined the possible connections between precipitation trends and urbanization
in the region of South China. Key findings are summarized as follows:

(1) There was no marked warm-season precipitation trend in Chengyu urban cluster.
A downward trend of precipitation occurred over the Yangtze River Delta urban cluster.
The Fujian Guangdong coast urban cluster experienced an obvious precipitation increase.

(2) For Chengyu urban cluster, a lack of precipitation trend is likely due to insignificant
trends in CAPE and TCWV. These can be explained by a reduced local moisture recycling
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in the urban area, balanced by an increased evapotranspiration in the rural areas, together
with a stable large-scale advection of water vapor input to the region.

(3) The negative trend in precipitation for the Yangtze River Delta cluster, is not ex-
plained well by a slightly decreased CAPE and increased TCWV, but seems to be associated
with an increased PBL and reduced land surface evaporation. They both can be induced by
rapid urbanization in this area.

(4) For the Fujian Guangdong coast urban cluster, a marked positive precipitation
trend is explained by positive trends in CAPE and TCWV. The increased precipitation in this
urban cluster likely benefits from enhanced moisture recycling due to improved vegetation
cover in the rural areas, and enhanced adjective moisture inputs due to urbanization along
the coast.

(5) In additional to urbanization, large-scale vegetation cover improvement in south
China seems to have an impact on precipitation via increasing local moisture recycling.
Without this vegetation cover change, an inland urbanization (e.g., Chenyu) likely makes
the area warmer and dryer. In the coastal area, urbanization enhances sea breezes, which
may benefit precipitation if sea breezes go along with the prevailing moisture. Therefore,
in order to reduce the risk of making the area warmer and dryer, it is necessary to improve
the large-scale vegetation cover in the process of urbanization.
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