Transport Mechanism of Suspended Sediments and Migration Trends of Sediments in the Central Hangzhou Bay
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Field Observations
3.2. Sample Processing
3.3. Data Analysis Methods
4. Results
4.1. Flow Velocity Characteristics
4.2. Temporal and Spatial Distribution of SSC
4.2.1. Intertidal Processes of SSC
4.2.2. Spring-Neap Processes and Horizontal Distribution of SSC
4.3. Transport Mechanism of Suspended Sediments
4.3.1. Advection Transport
4.3.2. Tidal Pumping Transport
4.3.3. Vertical Circulation Transport
4.3.4. Net Sediment Transport
4.3.5. Contribution Rates
4.4. Bed Sediments
4.4.1. Distribution of Grain Size Parameters , and of Bed Sediments
4.4.2. Sediment Transport Trends
5. Discussion
5.1. Generation of Soft Mud Layer in Hangzhou Bay
5.2. Sediment Transport Mode in Hangzhou Bay
5.3. Relationship between the Sediment Transport Mode and the Overall Erosion and Deposition in Hangzhou Bay
5.4. Mechanism of Hydrodynamics on Controlling Sediment Transport in Hangzhou Bay
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, G.; Huang, J. Comprehensive utilization of the estuary and coastal zone of China. Water Resour. Hydropower Eng. 2001, 1, 38–42. (In Chinese) [Google Scholar]
- Erica, G. Fortresses of mud: How to protect the San Francisco Bay Area from rising seas. Nature 2018, 562, 178–180. [Google Scholar]
- Dai, Z.; Liu, J.T.; Xie, H.; Shi, W. Sedimentation in the Outer Hangzhou Bay, China: The Influence of Changjiang Sediment Load. J. Coast. Res. 2014, 30, 1218–1225. [Google Scholar] [CrossRef]
- Talke, S.A.; de Swart, H.E.; Schuttelaars, H.M. Feedback between residual circulations and sediment distribution in highly turbid estuaries: An analytical model. Cont. Shelf Res. 2009, 29, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Dai, Z.; Mei, X.; Liu, J.P.; Gao, S.; Li, S. Shoal morphodynamics of the Changjiang (Yangtze) estuary: Influences from river damming, estuarine hydraulic engineering and reclamation projects. Mar. Geol. 2017, 386, 32–43. [Google Scholar] [CrossRef]
- Guo, L.; Su, N.; Zhu, C.; He, Q. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam? J. Hydrol. 2018, 560, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Milliman, J.D.; Xu, K.; Deng, B.; Zhang, X.; Luo, X. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Zhu, L.; He, Q.; Shen, J.; Wang, Y. The influence of human activities on morphodynamics and alteration of sediment source and sink in the Changjiang Estuary. Geomorphology 2016, 273, 52–62. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Dai, S.; Liu, Z.; Zhang, J.; Ding, P. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophys. Res. Lett. 2006, 33, L06408. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Chen, X.; Gu, S.; et al. Mapping Sea Level Rise Behavior in an Estuarine Delta System: A Case Study along the Shanghai Coast. Engineering 2018, 4, 156–163. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Cheng, P.; Zhang, G.; Jiufa, L. Flood-ebb asymmetry in current velocity and suspended sediment transport in the Changjiang Estuary. Acta Oceanol. Sin. 2016, 35, 37–47. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, Z.; Zhou, B.; Li, Y.; Yin, S.; He, X.; Peng, X.; Shum, C.K. Tidal-driven variation of suspended sediment in Hangzhou Bay based on GOCI data. Int. J. Appl. Earth Observ. Geoinf. 2019, 82, 101920. [Google Scholar] [CrossRef]
- Xie, D.; Pan, C.; Wu, X.; Gao, S.; Wang, Z. Local human activities overwhelm decreased sediment supply from the Changjiang River: Continued rapid accumulation in the Hangzhou Bay-Qiantang Estuary system. Mar. Geol. 2017, 392, 66–77. [Google Scholar] [CrossRef]
- Xie, D.; Gao, S.; Wang, Z.; Pan, C. Numerical modeling of tidal currents, sediment transport and morphological evolution in Hangzhou Bay, China. Int. J. Sediment Res. 2013, 28, 316–328. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, R.; Zhu, H.; Jiang, S.; Xu, Y.; Wang, N. Modeling studies of tidal dynamics and the associated responses to coastline changes in the Bohai Sea, China. Ocean Dyn. 2018, 68, 1625–1648. [Google Scholar] [CrossRef]
- Milliman, J.D.; Chen, H.; Yang, Z.; Meade, R.H. Transport and Deposition of River Sediment in the Changjiang Estuary and Adjacent Continental Shelf. Cont. Shelf Res. 1985, 4, 37–45. [Google Scholar] [CrossRef]
- Wei, W.; Mei, X.; Dai, Z.; Tang, Z. Recent morphodynamic evolution of the largest uninhibited island in the Yangtze (Changjiang) estuary during 1998–2014: Influence of the anthropogenic interference. Cont. Shelf Res. 2016, 124, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Wang, K. Changjiang river plume and suspended sediment transport in Hangzhou Bay. Cont. Shelf Res. 1989, 9, 93–111. [Google Scholar]
- Chen, J.; Liu, C.; Zhang, C.; Walker, H.J. Geomorphological Development and Sedimentation in Qiantang Estuary and Hangzhou Bay. J. Coast. Res. 1990, 6, 559–572. [Google Scholar]
- Liu, Y.F.; Chen, S.L.; Cai, T.L.; Jia, J.J.; Xia, X.M. Morphological evolution and forecast of Jinshan Trough in the Hangzhou Bay of China. Mar. Sci. Bull. 2017, 36, 284–292. (In Chinese) [Google Scholar]
- Xie, D.; Wang, Z.; Gao, S.; Vriend, H.J.D. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China. Cont. Shelf Res. 2009, 29, 1757–1767. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, Q.; Zhu, J. Possible influence of the South-to-North Water Diversion Project on the evolvement of the Yangtze delta. Shanghai Geol. 2001, 2, 7–11. (In Chinese) [Google Scholar]
- Liu, S.; Zhong, G.; Kuang, C.; Sun, B.; Gou, H.; Huang, W. Effects of South-To-North Water Transfer Project on Salinity Intrusion in Yangtze Estuary. Coast. Hazards 2013, 119–128. [Google Scholar]
- Yang, Z.; Wang, H.; Saito, Y.; Milliman, J.D.; Xu, K.; Qiao, S.; Shi, G. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res. 2006, 42, W04407. [Google Scholar] [CrossRef]
- Zhu, B.; Li, Y.; YU, W.; Sun, Z.; Deng, J.; Chai, Y.; Zhang, C. An Analysis of the Processes and Trends of Changes in Yangtze River Water and Sediment Fluxes into the Ocean. Resour. Environ. Yangtze Basin 2019, 28, 2980–2991. (In Chinese) [Google Scholar] [CrossRef]
- Yu, J.; Cao, Y. Sediment deposition after regulation and reclaiming of Qiantang Estuary. J. Sediment Res. 2006, 01, 17–24. (In Chinese) [Google Scholar]
- Pan, C.; Han, Z. Regulation of Qiantang River estuary and scientific and technological innovations. China Water Resour. 2011, 10, 19–22. (In Chinese) [Google Scholar]
- Xie, D.; Pan, C.; Wu, X.; Gao, S.; Wang, Z. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years. J. Geophys. Res. Oceans 2017, 122, 2999–3020. [Google Scholar] [CrossRef] [Green Version]
- Mcmanus, J. Grain size determination and interpretation. In Techniques in Sedimentology; Tucker, M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1988; pp. 63–83. [Google Scholar]
- Dyer, K.R. The salt balance in stratified estuaries. Estuar. Coast. Mar. Sci. 1974, 2, 273–281. [Google Scholar] [CrossRef]
- Zhong, W.; Zhu, L.; Dong, P.; Hu, R.; Wu, J.; Zhu, Y.; Duan, H. Mechanisms of sediment trapping in coastal embayments off the Shandong Peninsula in summer—A case study in Weihai Bay. Estuar. Coast. Shelf Sci. 2020, 236, 106623. [Google Scholar] [CrossRef]
- Hua, X.; Huang, H.; Wang, Y.; Lan, Y.; Zha, K.; Chen, D. Abnormal ETM in the North Passage of the Changjiang River Estuary: Observations in the wet and dry seasons of 2016. Estuar. Coast. Shelf Sci. 2019, 227, 106334. [Google Scholar] [CrossRef]
- Li, X.; Zhu, J.; Yuan, R.; Qiu, C.; Wu, H. Sediment trapping in the Changjiang Estuary: Observations in the North Passage over a spring-neap tidal cycle. Estuar. Coast. Shelf Sci. 2016, 177, 8–19. [Google Scholar] [CrossRef]
- Gao, S.; Collins, M.B. Analysis of Grain Size Trends, for Defining Sediment Transport Pathways in Marine Environments. J. Coast. Res. 1994, 10, 70–78. [Google Scholar]
- Qiao, S.; Shi, X.; Wang, G.; Yang, G.; Hu, N.; Liu, S.; Liu, Y.; Zhu, A.; Li, C. Discussion on grain-size characteristics of seafloor sediment and transport pattern in the Bohai Sea. Haiyang Xuebao 2010, 32, 139–147. (In Chinese) [Google Scholar]
- Wang, G.; Shi, X.; Liu, Y.; Wang, K. Grain-size trend analysis on the south branch of the Changjiang Estuary in China and its implication. Haiyang Xuebao 2007, 29, 161–166. (In Chinese) [Google Scholar]
- Wang, H.; Gao, S. Tidal flat sediment characteristics and transport trends along the northern bank of Hangzhou bay. Mar. Geol. Quat. Geol. 2007, 27, 25–30. (In Chinese) [Google Scholar]
- Gao, S.; Collins, M. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”. Sediment. Geol. 1992, 81, 47–60. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Jia, J. Sediment Distribution and Transport Patterns in Jiaozhou Bay and Adjoining Areas. Acta Geophys. Sin. 2000, 67, 449–458. (In Chinese) [Google Scholar]
- Shen, Q.; Gao, Q.; Gu, F.; Qi, D. Analysis of the sediment motion at north passage in flood and dry season after 3rd phase engineering of the deep waterways in Changjiang Estuary. Acta Oceanol. Sin. 2014, 36, 118–124. (In Chinese) [Google Scholar]
- Hu, H.; Wei, T.; Yang, Z.; Hackney, C.R.; Parsons, D.R. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence. Estuar. Coast. Shelf Sci. 2018, 205, 110–122. [Google Scholar] [CrossRef]
- Shi, Z. Observation of fluid in the deepwater navigational channel of Hangzhou Bay. Mar. Sci. Bull. 2001, 06, 40–50. (In Chinese) [Google Scholar]
- Abril, G.; Etcheber, H.; Hir, P.L.; Bassoullet, P.; Boutier, B.; Frankignoulle, M. Oxic/Anoxic Oscillations and Organic Carbon Mineralization in an Estuarine Maximum Turbidity Zone (The Gironde, France). Limnol. Oceanogr. 1999, 44, 1304–1315. [Google Scholar] [CrossRef] [Green Version]
- Uncles, R.J.; Stephens, J.A.; Harris, C. Runoff and tidal influences on the estuarine turbidity maximum of a highly turbid system: The upper Humber and Ouse Estuary, UK. Mar. Geol. 2006, 235, 213–228. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, J.; Wang, Y.; Hui, W.; Wu, J. Tripod measured residual currents and sediment flux: Impacts on the silting of the Deepwater Navigation Channel in the Changjiang Estuary. Estuar. Coast. Shelf Sci. 2011, 93, 192–201. [Google Scholar] [CrossRef]
- Dalrymple, R.W. Sedimentary Facies and Stratigraphy of the Changjiang (Yangtze River) Delta. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Hu, H.; Cheng, H.; Wei, T.; Yang, Z. Measuring bed load with an acoustic Doppler current profiler in Changjiang Estuary. J. Sediment Res. 2015, 05, 1–6. (In Chinese) [Google Scholar]
- Antunes, D.C.; José, S.; Temperville, A.; Seabra-Santos, F.J. Bottom friction and time-dependent shear stress for wave-current interaction. J. Hydraul. Res. 2003, 41, 27–37. [Google Scholar] [CrossRef]
- Cao, P.; Gu, G.; Dong, Y.; Hu, F. Basic Characteristics of Sediment Transport in Hangzhou Bay. J. East China Norm. Univ. 1985, 3, 75–84. (In Chinese) [Google Scholar]
- Gao, S.; Wang, D.; Yang, Y.; Zhou, L.; Zhao, Y.; Gao, W.; Han, Z.; Yu, Q.; Li, G. Holocene sedimentary systems on a broad continental shelf with abundant river input: Process-product relationships. Geol. Soc. Lond. Spec. Publ. 2016, 429, 223–259. [Google Scholar] [CrossRef]
- Nidzieko, N.J.; Ralston, D.K. Tidal asymmetry and velocity skew over tidal flats and shallow channels within a macrotidal river delta. J. Geophys. Res. Oceans 2012, 117, C03001. [Google Scholar] [CrossRef] [Green Version]
Station No. | Statistics | Spring Tide | Intermediate Tide | Neap Tide |
---|---|---|---|---|
H1 | Average | 0.93 | 0.86 | 0.50 |
Max | 1.76 | 1.66 | 0.96 | |
H2 | Average | 1.15 | 1.05 | 0.53 |
Max | 2.03 | 1.91 | 1.07 | |
H3 | Average | 1.57 | 1.39 | 0.9 |
Max | 3.25 | 3.01 | 1.74 |
Station | Tidal Cycle | T1 + T2 | T3 + T4 + T5 | T6 + T7 | Total Net Flux kg/(m·s) | |||
---|---|---|---|---|---|---|---|---|
Flux kg/(m·s) | Ratio % | Flux kg/(m·s) | Ratio % | Flux kg/(m·s) | Ratio % | |||
H1 | Spring | 1.50 | 30 | −3.46 | −70 | 0.00 | 0 | −1.96 |
Intermediate | 0.39 | 20 | −1.43 | −73 | 0.13 | 7 | −0.91 | |
Neap | 0.24 | 44 | −0.22 | −41 | −0.08 | −15 | −0.06 | |
Total | 2.13 | 29 | −5.11 | −70 | 0.05 | 1 | −2.92 | |
H2 | Spring | 2.26 | 66 | −1.15 | −33 | 0.04 | 1 | 1.15 |
Intermediate | 0.88 | 55 | −0.57 | −36 | 0.15 | 9 | 0.46 | |
Neap | 0.51 | 55 | −0.36 | −39 | −0.06 | −6 | 0.09 | |
Total | 3.65 | 62 | −2.08 | −35 | 0.13 | 2 | 1.7 | |
H3 | Spring | −5.56 | −28 | 13.97 | 70 | −0.53 | −3 | 7.88 |
Intermediate | −2.90 | −36 | 5.20 | 64 | −0.03 | 0 | 2.27 | |
Neap | −1.28 | −37 | 1.89 | 54 | −0.33 | −9 | 0.28 | |
Total | −9.74 | −31 | 21.06 | 66 | −0.89 | −3 | 10.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Shi, W.; Zhang, J.; Hu, H.; Zhang, F.; Xu, X. Transport Mechanism of Suspended Sediments and Migration Trends of Sediments in the Central Hangzhou Bay. Water 2020, 12, 2189. https://doi.org/10.3390/w12082189
Song Z, Shi W, Zhang J, Hu H, Zhang F, Xu X. Transport Mechanism of Suspended Sediments and Migration Trends of Sediments in the Central Hangzhou Bay. Water. 2020; 12(8):2189. https://doi.org/10.3390/w12082189
Chicago/Turabian StyleSong, Zekun, Weiyong Shi, Junbiao Zhang, Hao Hu, Feng Zhang, and Xuefeng Xu. 2020. "Transport Mechanism of Suspended Sediments and Migration Trends of Sediments in the Central Hangzhou Bay" Water 12, no. 8: 2189. https://doi.org/10.3390/w12082189
APA StyleSong, Z., Shi, W., Zhang, J., Hu, H., Zhang, F., & Xu, X. (2020). Transport Mechanism of Suspended Sediments and Migration Trends of Sediments in the Central Hangzhou Bay. Water, 12(8), 2189. https://doi.org/10.3390/w12082189