Daily Water Requirement of Container Grown Davallia bullata and Nephrolepis exaltata and Implication in Irrigation Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup, Plant Materials, and Their Growth
2.2. Data Collection
2.3. Modelling of Plant Water Use
3. Results
3.1. Reference Evapotranspiration
3.2. Plant Growth
3.3. Plant ETA
3.4. Data Analysis and Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Wei, X. Controlled-Released Fertilizers as A Means to Reduce Nitrogen Leaching and Runoff in Container-Grown Plant Production. In Nitrogen in Agriculture-Updates; Khan, A., Fahad, S., Eds.; InTechOpen Limited: London, UK, 2018; pp. 33–52. [Google Scholar]
- Chen, J.; McConnell, D.B.; Norman, D.L.; Henny, R.J. The foliage plant industry. Hort. Rev. 2005, 31, 47–112. [Google Scholar]
- Berger, M.; Finkbeiner, M. Water footprinting: How to address water use in life cycle assessment? Sustainability 2010, 2, 919–944. [Google Scholar] [CrossRef][Green Version]
- Bacci, L.; Battista, P.; Cardarelli, M.; Carmassi, G.; Rouphael, Y.; Incrocci, L.; Malorgio, F.; Pardossi, A.; Rapi, B.; Colla, G. Modelling Evapotranspiration of Container Crops for Irrigation Scheduling. In Evapotranspiration—From Measurements to Agricultural and Environmental Applications; Gerosa, G., Ed.; IntechOpen Limited: London, UK, 2011; pp. 263–282. [Google Scholar]
- Fulcher, F.A.; Buxton, J.W.; Geneve, R.L. Developing a physiological-based, on-demand irrigation system for container production. Sci. Hortic. 2012, 138, 221–226. [Google Scholar] [CrossRef]
- Million, J.B.; Yeager, T.H. Periodic versus real-time adjustment of a leaching fraction-based microirrigation schedule for container-grower plants. HortScience 2020, 55, 83–88. [Google Scholar] [CrossRef][Green Version]
- Mack, R.; Owen, J.S.; Niemiera, A.X.; Latimer, J. Virginia nursery and greenhouse grower survey of best management practices. HortTechnology 2017, 27, 386–392. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of greenhouse crops. Horticulturae 2019, 5, 7. [Google Scholar] [CrossRef][Green Version]
- Beeson, R.C., Jr. Suspension lysimeter systems for quantifying water use and modulating water stress for crops grown in organic substrates. Agric. Water Manag. 2011, 98, 967–976. [Google Scholar] [CrossRef]
- Majsztrik, J.C.; Ristvey, A.G.; Lea-Cox, J.D. Water and nutrient management in the production of container-grown ornamentals. Hort. Rev. 2011, 38, 253. [Google Scholar]
- Ingram, D.L.; Hall, C.R.; Knight, J. Modeling container-grown Euphorbia pulcherrima production system components: Impacts on carbon footprint and variable costs using a life cycle assessment. HortScience 2019, 54, 262–266. [Google Scholar] [CrossRef][Green Version]
- Chen, J.; Beeson, R.C., Jr.; Yeager, T.H.; Stamps, R.H.; Felter, L.A. Evaluation of captured rainwater and irrigation runoff for greenhouse foliage and bedding plant production. HortScience 2003, 38, 228–233. [Google Scholar] [CrossRef][Green Version]
- Jahromi, N.B.; Fulcher, A.; Walker, F.; Altland, J. Optimizing substrate available water and coir amendment rate in pine bark substrate. Water 2020, 12, 362. [Google Scholar] [CrossRef][Green Version]
- Chen, J.; Huang, Y.; Caldwell, R.D. Best management practices for minimizing nitrate leaching from container-grown nurseries. Sci. World J. 2001, 1, 96–102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mangiafico, S.S.; Gan, J.; Wu, L.; Lu, J.; Newman, J.P.; Faber, B.; Merhaut, D.J.; Evans, R. Detention and Recycling Basins for Managing Nutrient and Pesticide Runoff from Nurseries. HortScience 2008, 43, 393–398. [Google Scholar] [CrossRef][Green Version]
- Wilson, C.; Albano, J.; Mozdzen, M.; Riiska, C. Irrigation water and nitrate-nitrogen loss characterization in Southern Florida nurseries: Cumulative volumes, runoff rates, nitrate-nitrogen concentrations and loadings, and implications for management. HortTechnology 2010, 20, 325–330. [Google Scholar] [CrossRef]
- USDA, USDA National Agricultural Statistics Service. Nursery Crops 2006 Summary; USDA: Washington, DC, USA, 2007.
- USDA, USDA National Agricultural Statistics Service. Floriculture Crop 2018 Summary; USDA: Washington, DC, USA, 2019.
- Henny, R.J.; Chen, J. Cultivar development of ornamental foliage plants. Plant Breed. Rev. 2003, 23, 245–290. [Google Scholar]
- Chen, J.; Beeson, R.C., Jr. Actual evapotranspiration of Asplenium nidus and Chamaedorea elegans during production from liners to marketable plants. Acta Hortic. 2013, 990, 339–344. [Google Scholar] [CrossRef]
- Beeson, R.C., Jr.; Chen, J. Quantification of Daily Water requirements of container grown Calathea and Stromanthe produced in a shaded greenhouse. Water 2018, 10, 1194. [Google Scholar] [CrossRef][Green Version]
- Beeson, R.C., Jr.; Chen, J. Daily evapotranspiration of Guzmania ‘Irene’ and Vriesea ‘Carly’ bromeliads produced in a shaded greenhouse. HortScience 2018, 53, 1814–1819. [Google Scholar] [CrossRef][Green Version]
- Beeson, R.C., Jr. Modeling actual evapotranspiration of Ligustrum japonicum from rooted cuttings to commercially marketable plants in 12-liter black polyethylene containers. Acta Hortic. 2004, 664, 71–77. [Google Scholar] [CrossRef]
- Campbell Scientific. Application Note 4-D; Campbell Scientific Ltd.: Logan, UT, USA, 1991. [Google Scholar]
- Kjelgren, R.; Beeson, R.C., Jr.; Pittenger, D.R.; Montague, D.T. Simplified landscape irrigation demand estimation: Slide rules. Appl. Eng. Agric. 2016, 32, 363–378. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Beeson, R.C., Jr. Modeling irrigation requirements for landscape ornamentals. HortTechnology 2005, 15, 18–22. [Google Scholar] [CrossRef]
- Beeson, R.C., Jr. Response of evapotranspiration of Viburnum odoratissimum to canopy closure and the implications for water conservation during production and in landscapes. HortScience 2010, 45, 359–364. [Google Scholar] [CrossRef][Green Version]
- Beeson, R.C., Jr. Modeling actual evapotranspiration of Viburnum odoratissimum during production from rooted cuttings to market size plants in 11.4-L containers. HortScience 2010, 45, 1260–1264. [Google Scholar] [CrossRef][Green Version]
- Beeson, R.C., Jr. Development of a simple reference evapotranspiration model for irrigation of woody ornamentals. HortScience 2012, 47, 264–268. [Google Scholar] [CrossRef][Green Version]
- Hagen, E.; Mambuthiri, S.; Fulcher, A.; Geneve, R. Comparing substrate moisture-based daily water use and on-demand irrigation regimes for oakleaf hydrangea grown in two container sizes. Sci. Hortic. 2014, 179, 132–139. [Google Scholar] [CrossRef]
- Pershey, N.A.; Cregg, B.N.; Andresen, J.A.; Fernandez, R.T. Irrigating based on daily water use reduces nursery runoff volume and nutrient load without reducing growth of four conifers. HortScience 2015, 50, 1553–1561. [Google Scholar] [CrossRef]
- Chen, J.; Henny, R.J.; McConnell, D.B. Development of New Foliage Plant Cultivars. In Trends in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002; pp. 466–472. [Google Scholar]
- Allen, R.G.; Walter, I.; Elliot, R.; Howell, T. The ASCE Standardized Reference Evapotranspiration Equation; American Society of Civil Engineers: Reston, VA, USA, 2005. [Google Scholar]
- Henny, R.J.; Holm, J.R.; Chen, J.; Scheiber, M. In vitro induction of tetraploids in Dieffenbachia x ‘Star Bright M-1’ by colchicine. HortScience 2009, 44, 646–650. [Google Scholar] [CrossRef][Green Version]
- Stanhill, G. Water use efficiency. Adv. Agron. 1987, 39, 53–85. [Google Scholar]
- Devitt, D.A.; Morris, R.L.; Neuman, D.S. Evapotranspiration and growth response of three woody ornamental species placed under varying irrigation regimes. J. Am. Soc. Hortic. Sci. 1994, 119, 452–457. [Google Scholar] [CrossRef][Green Version]
- Piouceau, J.; Panfili, F.; Bois, G.; Anastase, M.; Dufosse, L.; Arfi, V. Actual evapotranspiration and crop coefficients for five species of three-year-old bamboo plants under a tropical climate. Agric. Water Manag. 2014, 137, 15–22. [Google Scholar] [CrossRef]
- Beeson, R.C., Jr.; Arnold, M.A.; Bilderback, T.E.; Bolusky, B.; Chandler, S.; Gramling, H.M.; LeaCox, J.D.; Harris, J.R.; Klinger, P.J.; Mathers, H.M.; et al. Strategic vision of container nursery irrigation in the next ten years. J. Environ. Hort. 2004, 22, 113–115. [Google Scholar]
- Warsaw, A.L.; Fernandez, R.T.; Cregg, B.M.; Andresen, J.A. Water conservation, growth, and water use efficiency of container grown woody ornamentals irrigated based on daily water use. HortScience 2009, 44, 1308–1318. [Google Scholar] [CrossRef]
- Beeson, R.C., Jr. Evapotranspiration and above ground biomass of Acer rubrum from liners to 8 m tall trees. Am. J. Plant Sci. 2016, 7, 2440–2456. [Google Scholar] [CrossRef][Green Version]
- Beeson, R.C., Jr.; Duong, H.T.T.; Kjelgren, R.J. Developing a simple water use model for Ilex x ‘Nellie R Stevens’ from liners to four-meter tall trees. J. Agric. Stud. 2017, 5, 83–96. [Google Scholar]
- Beeson, R.C., Jr.; Duong, H.T.T.; Kjelgren, R.J. Water use of juvenile live oak (Quercus virginiana) trees over five years in a humid climate. Open J. For. 2018, 8, 1–14. [Google Scholar]
Plant | Mean Leaf No. | Leaf Area(cm2) | Shoot Fresh Weight (g) | Root Fresh Weight (g) | Shoot Dry Weight (g) | Root Dry Weight (g) | Water Use Efficiency (g/L)y |
---|---|---|---|---|---|---|---|
Davallia | 233.2 ± 2.45 | 4561.93 ± 45.62 | 162.7 ± 0.85 | 13.0 ± 0.15 | 33.1 ± 0.13 | 4.5 ± 0.03 | 2.9 |
Nephrolepis-1 | 110.7 ± 3.24 | 7739.2 ± 85.26 | 119.6 ± 2.95 | 31.0 ± 2.36 | 18.8 ± 0.94 | 3.4 ± 0.25 | 2.4 |
Nephrolepis-2 | 127.4 ± 2.87 | 10,344.3 ± 101.65 | 173.7 ± 4.25 | 47.2 ± 3.85 | 25.8 ± 1.75 | 4.8 ± 0.54 | 3.3 |
Species | Model Equation | r2 |
---|---|---|
Davallia bullata | PF = 0.699 – 0.470/%CC – 0.698/%CC2 – 0.088/%CC3 | 0.801 |
Nephrolepis exaltata | PF = 0.365 + 0.135/%CC + 0.562/%CC2 – 0.101/%CC3 | 0.860 |
Species | Leaf Area (cm2) | Dry Weigh (g) | Day of Plant Growth | Mean Daily ETA (mL) | Cum. ETA (L) | Water Use Efficiency (g/L) |
---|---|---|---|---|---|---|
Asplenium nidus z | ND | ND | 294 | 27.1 | 8.0 | ND |
Chamaedorea elegans z | ND | ND | 280 | 23.0 | 6.4 | ND |
Calathea ‘Silhouette’ y | 852.0 | 4.2 | 224 | 21.6 | 4.8 | 0.9 |
Stromanthe sanguinea y | 2729.2 | 17.4 | 226 | 29.5 | 6.8 | 2.6 |
Guzmania ‘Irene’ x | 4067.4 | 31.5 | 665 | 25.1 | 16.7 | 1.9 |
Vriesea ‘Carly’ x | 1583.5 | 10.5 | 224 | 69.3 | 15.5 | 0.7 |
Davallia bullata w | 4561.9 | 37.6 | 431 | 29.0 | 13.2 | 2.9 |
Nephrolepis exaltata (crop 1) w | 7739.2 | 22.2 | 133 | 69.5 | 9.4 | 2.4 |
Nephrolepis exaltata (crop 2) w | 10,344.3 | 30.6 | 123 | 74.0 | 9.4 | 3.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beeson, R.C., Jr.; Kjelgren, R.; Chen, J. Daily Water Requirement of Container Grown Davallia bullata and Nephrolepis exaltata and Implication in Irrigation Practices. Water 2020, 12, 2190. https://doi.org/10.3390/w12082190
Beeson RC Jr., Kjelgren R, Chen J. Daily Water Requirement of Container Grown Davallia bullata and Nephrolepis exaltata and Implication in Irrigation Practices. Water. 2020; 12(8):2190. https://doi.org/10.3390/w12082190
Chicago/Turabian StyleBeeson, Richard C., Jr., Roger Kjelgren, and Jianjun Chen. 2020. "Daily Water Requirement of Container Grown Davallia bullata and Nephrolepis exaltata and Implication in Irrigation Practices" Water 12, no. 8: 2190. https://doi.org/10.3390/w12082190