A Study on the Recovery of Head and the Total Dissolved Solids (TDS) from Long-Term Pressure Depressions in Low Permeable Coastal Aquifers
Abstract
:1. Introduction
2. Methodology
2.1. Spatial Measurements for the TZ
2.2. Centroid-Coordinate Rescaling
2.3. Unconditional LogK-Field Generation
3. Model Setup
3.1. Conceptual Model
3.2. Spatial Discretization
3.3. Basic Model Parameters
3.4. Boundary Conditions and Initial Conditions
4. Simulation Results and Discussion
4.1. Homogeneous Case Studies
4.1.1. Case Designs
4.1.2. Base Case Study
4.1.3. Sensitivity Analysis
4.2. Heterogeneous Case Studies
4.2.1. Realization and Case Design
4.2.2. Simulation Results
4.2.3. Centroid Movement Considering Aquifer Heterogeneity
4.2.4. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The United States Central Intelligence Agency (CIA). United States—Society Index. 2007. Available online: http://www.allcountries.org/uscensus/30_population_in_coastal_counties.html (accessed on 20 February 2019).
- Sherif, M.M.; Hamza, K.I. Mitigation of Seawater Intrusion by Pumping Brackish Water. Transp. Porous Med. 2001, 43, 29–44. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Europe’s Water: An Indicator-Based Assessment; Topic report No 1/2003; EEA: Copenhagen, Denmark, 2003. [Google Scholar]
- Zhou, Q.L.; Bear, J.; Bensabat, J. Saltwater Upconing and Decay beneath a Well Pumping Above an Interface Zone. Transp. Porous Med. 2005, 61, 337–363. [Google Scholar] [CrossRef]
- Shi, L.; Jiao, J.J. Seawater intrusion and coastal aquifer management in China: A review. Environ. Earth Sci. 2014, 72, 2811–2819. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, J.; Wu, J.F.; Yang, Y.; Wu, J. Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City in northern China. Environ. Earth Sci. 2016, 75, 805. [Google Scholar] [CrossRef]
- Park, S.C.; Yun, S.T.; Chae, G.T.; Yoo, I.S.; Shin, K.S.; Heo, C.H.; Lee, S.K. Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J. Hydrol. 2005, 313, 182–194. [Google Scholar] [CrossRef]
- Bear, J.; Zhou, Q.L.; Bensabat, J. Three dimensional simulation of seawater intrusion in heterogeneous aquifers: Application to the coastal aquifers of Israel. In Proceedings of the First International Conference on Saltwater Intrusion and Coastal Aquifers-Monitoring, Modeling, and Management, Essaouira, Morocco, 23–25 April 2001. [Google Scholar]
- Misut, P.E.; Voss, C.I. Freshwater-saltwater transition zone movement during aquifer storage and recovery cycles in Brooklyn and Queens, New York City, USA. J. Hydrol. 2007, 337, 87–103. [Google Scholar] [CrossRef]
- Park, J.B.; Jung, H.; Lee, E.Y.; Kim, C.L.; Kim, G.Y.; Kim, K.S.; Koh, Y.K.; Park, K.W.; Cheong, J.H.; Jeong, C.W.; et al. Wolsong low-and intermediate-level radioactive waste disposal center: Progress and challenges. Nucl. Eng. Technol. 2009, 41, 1–16. [Google Scholar] [CrossRef]
- Dagan, G.; Zeitoun, D.G. Seawater-freshwater interface in a stratified aquifer of random permeability distribution. J. Contam. Hydrol. 1998, 29, 185–203. [Google Scholar] [CrossRef]
- Dagan, G.; Zeitoun, D.G. Free-surface flow toward a well and interface upcoming in stratified aquifers of random conductivity. Water Resour. Res. 1998, 34, 3191–3196. [Google Scholar] [CrossRef]
- Dagan, G.; Cvetkovic, V. Spatial moments of a kinetically sorbing solute plume in a heterogeneous aquifer. Water Resour. Res. 1993, 29, 4053–4061. [Google Scholar] [CrossRef]
- Ezzedine, S.; Rubin, Y. Analysis of the Cape Cod tracer data. Water Resour. Res. 1997, 33, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.F.; Zheng, C.M.; Chien, C.C. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. J. Contam. Hydrol. 2005, 77, 41–65. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, C.V.; Journel, A.G. GSLIB: Geostatistical Software Library and User’s Guide, 2nd ed.; Applied Geostatistics Series; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Kunkel, R.; Wendland, F. WEKU—A GIS-Supported stochastic model of groundwater residence times in upper aquifers for the supraregional groundwater management. Environ. Geol. 1997, 30, 1–9. [Google Scholar] [CrossRef]
- Diersch, H.-J.G. FEFLOW—Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Barlow, P.M. Ground Water in Freshwater-Saltwater Environments of the Atlantic Coast: U.S. Geological Survey Circular 1262; U.S. Geological Survey: Reston, VA, USA, 2003.
Hydraulic Conductivity (m/s) | Anisotropic Ratio | Recharge (m/day) | Porosity | Specific Storage (m−1) | Longitudinal Dispersivity (m) | |
---|---|---|---|---|---|---|
Base case | 5.0 × 10−7 | 1 | 3.64 × 10−4 | 0.0035 | 1.0 × 10−4 | 100 |
Case 1 | 5.0 × 10−7 | 1 | 3.64 × 10−4 | 0.0035 | 1.0 × 10−4 | 66.7 |
Case 2 | 5.0 × 10−7 | 1 | 3.64 × 10−4 | 0.0035 | 1.0 × 10−4 | 200 |
Case 3 | 2.5 × 10−7 | 1 | 3.64 × 10−4 | 0.0035 | 1.0 × 10−4 | 100 |
Case 4 | 6.0 × 10−7 (Hmin = −15 m) | 1 | 3.64 × 10−4 | 0.0035 | 1.0 × 10−4 | 100 |
Case 5 | 5.0 × 10−7 | 0.5 | 3.64 × 10−4 | 0.0035 | 1.0 × 10−4 | 100 |
Case 6 | 5.0 × 10−7 | 2 | 3.64 × 10−4 | 0.0035 | 1.0 × 10−4 | 100 |
Case 7 | 5.0 × 10−7 | 1 | 3.64 × 10−4 | 0.00175 | 1.0 × 10−4 | 100 |
Case 8 | 5.0 × 10−7 | 1 | 3.64 × 10−4 | 0.0070 | 1.0 × 10−4 | 100 |
Case 9 | 5.0 × 10−7 | 1 | 3.03 × 10−4 (Hmin = −15 m) | 0.0035 | 1.0 × 10−4 | 100 |
Case 10 | 5.0 × 10−7 | 1 | 5.46 × 10−4 | 0.0035 | 1.0 × 10−4 | 100 |
Case 11 | 5.0 × 10−7 | 1 | 3.64 × 10−4 | 0.0035 | 5.0 × 10−5 | 100 |
Case 12 | 5.0 × 10−7 | 1 | 3.64 × 10−4 | 0.0035 | 2.0 × 10−4 | 100 |
Mean of lg(K) (m/s) | λmax (m) | λmin (m) | Variance | Hmin (m) | |
---|---|---|---|---|---|
New base case | −6.3 | 0 | 0 | ||
Case 1 | −6.3 | 60.0 | 20.0 | 0.1 | 0.0 |
Case 2 | −6.3 | 90.0 | 30.0 | 0.1 | 0.0 |
Case 3 | −6.3 | 120.0 | 40.0 | 0.1 | 0.0 |
Case 4 | −6.3 | 60.0 | 20.0 | 0.2 | 0.0 |
Case 5 | −6.3 | 90.0 | 30.0 | 0.2 | 0.0 |
Case 6 | −6.3 | 120.0 | 40.0 | 0.2 | 0.0 |
Case 7 | −6.3 | 60.0 | 60.0 | 0.1 | 0.0 |
Case 8 | −6.3 | 90.0 | 90.0 | 0.1 | 0.0 |
Case 9 | −6.3 | 120.0 | 120.0 | 0.1 | 0.0 |
Case 10 | −6.3 | 60.0 | 60.0 | 0.2 | 0.0 |
Case 11 | −6.3 | 90.0 | 90.0 | 0.2 | 0.0 |
Case 12 | −6.3 | 120.0 | 120.0 | 0.2 | 0.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Ding, G.; Hu, C.; Park, E.; Kim, Y.; Jeong, J. A Study on the Recovery of Head and the Total Dissolved Solids (TDS) from Long-Term Pressure Depressions in Low Permeable Coastal Aquifers. Water 2019, 11, 777. https://doi.org/10.3390/w11040777
Chen H, Ding G, Hu C, Park E, Kim Y, Jeong J. A Study on the Recovery of Head and the Total Dissolved Solids (TDS) from Long-Term Pressure Depressions in Low Permeable Coastal Aquifers. Water. 2019; 11(4):777. https://doi.org/10.3390/w11040777
Chicago/Turabian StyleChen, Huali, Guoping Ding, Cheng Hu, Eungyu Park, Yeongkyoo Kim, and Jina Jeong. 2019. "A Study on the Recovery of Head and the Total Dissolved Solids (TDS) from Long-Term Pressure Depressions in Low Permeable Coastal Aquifers" Water 11, no. 4: 777. https://doi.org/10.3390/w11040777
APA StyleChen, H., Ding, G., Hu, C., Park, E., Kim, Y., & Jeong, J. (2019). A Study on the Recovery of Head and the Total Dissolved Solids (TDS) from Long-Term Pressure Depressions in Low Permeable Coastal Aquifers. Water, 11(4), 777. https://doi.org/10.3390/w11040777