Next Article in Journal
A Model Predictive Water-Level Difference Control Method for Automatic Control of Irrigation Canals
Previous Article in Journal
A New Framework for the Management and Radiological Protection of Groundwater Resources: The Implementation of a Portuguese Action Plan for Radon in Drinking Water and Impacts on Human Health
Article Menu

Export Article

Open AccessArticle
Water 2019, 11(4), 761; https://doi.org/10.3390/w11040761

Simulating Current and Future River-Flows in the Karakoram and Himalayan Regions of Pakistan Using Snowmelt-Runoff Model and RCP Scenarios

1
Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
2
Department of Civil Engineering, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
3
Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
4
Spatial Sciences Discipline, School of Earth and Planetary Sciences, Curtin University, Kent St, Bentley WA 6102, Australia
*
Authors to whom correspondence should be addressed.
Received: 23 March 2019 / Revised: 9 April 2019 / Accepted: 9 April 2019 / Published: 12 April 2019
  |  
PDF [4143 KB, uploaded 12 April 2019]
  |  

Abstract

Upper Indus Basin (UIB) supplies more than 70% flow to the downstream agricultural areas during summer due to the melting of snow and glacial ice. The estimation of the stream flow under future climatic projections is a pre-requisite to manage water resources properly. This study focused on the simulation of snowmelt-runoff using Snowmelt-Runoff Model (SRM) under the current and future Representative Concentration Pathways (RCP 2.6, 4.5 and 8.5) climate scenarios in the two main tributaries of the UIB namely the Astore and the Hunza River basins. Remote sensing data from Advanced Land Observation Satellite (ALOS) and Moderate Resolution Imaging Spectroradiometer (MODIS) along with in-situ hydro-climatic data was used as input to the SRM. Basin-wide and zone-wise approaches were used in the SRM. For the zone-wise approach, basin areas were sliced into five elevation zones and the mean temperature for the zones with no weather stations was estimated using a lapse rate value of −0.48 °C to −0.76 °C/100 m in both studied basins. Zonal snow cover was estimated for each zone by reclassifying the MODIS snow maps according to the zonal boundaries. SRM was calibrated over 2000–2001 and validated over the 2002–2004 data period. The results implied that the SRM simulated the river flow efficiently with Nash-Sutcliffe model efficiency coefficient of 0.90 (0.86) and 0.86 (0.86) for the basin-wide (zone-wise) approach in the Astore and Hunza River Basins, respectively, over the entire simulation period. Mean annual discharge was projected to increase by 11–58% and 14–90% in the Astore and Hunza River Basins, respectively, under all the RCP mid- and late-21st-century scenarios. Mean summer discharge was projected to increase between 10–60% under all the RCP scenarios of mid- and late-21st century in the Astore and Hunza basins. This study suggests that the water resources of Pakistan should be managed properly to lessen the damage to human lives, agriculture, and economy posed by expected future floods as indicated by the climatic projections. View Full-Text
Keywords: mountainous terrain; MODIS; upper Indus Basin; water resources management mountainous terrain; MODIS; upper Indus Basin; water resources management
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Hayat, H.; Akbar, T.A.; Tahir, A.A.; Hassan, Q.K.; Dewan, A.; Irshad, M. Simulating Current and Future River-Flows in the Karakoram and Himalayan Regions of Pakistan Using Snowmelt-Runoff Model and RCP Scenarios. Water 2019, 11, 761.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top