Next Article in Journal
How does PTF Interpret Soil Heterogeneity? A Stochastic Approach Applied to a Case Study on Maize in Northern Italy
Next Article in Special Issue
Second Cheese Whey Treatment Using Zeolite under Continuous Flow Mode and Its Application on Wheat Growth
Previous Article in Journal
Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios
Previous Article in Special Issue
Zeolite as a Potential Medium for Ammonium Recovery and Second Cheese Whey Treatment
Open AccessArticle

Diversity and Biotechnological Potential of Xylan-Degrading Microorganisms from Orange Juice Processing Waste

Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
*
Author to whom correspondence should be addressed.
Water 2019, 11(2), 274; https://doi.org/10.3390/w11020274
Received: 28 November 2018 / Revised: 28 January 2019 / Accepted: 31 January 2019 / Published: 5 February 2019
The orange juice processing sector produces worldwide massive amounts of waste, which is characterized by high lignin, cellulose and hemicellulose content, and which exceeds 40% of the fruit’s dry weight (d.w.). In this work, the diversity and the biotechnological potential of xylan-degrading microbiota in orange juice processing waste were investigated through the implementation of an enrichment isolation strategy followed by enzyme assays for the determination of xylanolytic activities, and via next generation sequencing for microbial diversity identification. Intracellular rather than extracellular endo-1,4-β-xylanase activities were detected, indicating that peripheral cell-bound (surface) xylanases are involved in xylan hydrolysis by the examined microbial strains. Among the isolated microbial strains, bacterial isolates belonging to Pseudomonas psychrotolerans/P. oryzihabitans spectrum (99.9%/99.8% similarity, respectively) exhibited activities of 280 U/mg protein. In contrast, almost all microbial strains isolated exerted low extracellular 1,4-β-xylosidase activities (<5 U/mg protein), whereas no intracellular 1,4-β-xylosidase activities were detected for any of them. Illumina data showed the dominance of lactic and acetic acid bacteria and of the yeasts Hanseniaspora and Zygosaccharomyces. This is the first report on indigenous xylanolytic microbiota isolated from orange juice processing waste, possessing the biotechnological potential to serve as biocatalysts for citrus biomass valorization through the production of high-added value products and energy recovery. View Full-Text
Keywords: orange juice processing waste; biomass valorization; xylanolytic bacteria and yeasts; endo-1,4-β-xylanase activity; 1,4-β-xylosidase activity; hemicellulose hydrolysis; lactic acid bacteria (LAB); acetic acid bacteria (AAB) orange juice processing waste; biomass valorization; xylanolytic bacteria and yeasts; endo-1,4-β-xylanase activity; 1,4-β-xylosidase activity; hemicellulose hydrolysis; lactic acid bacteria (LAB); acetic acid bacteria (AAB)
Show Figures

Figure 1

MDPI and ACS Style

Zerva, I.; Remmas, N.; Ntougias, S. Diversity and Biotechnological Potential of Xylan-Degrading Microorganisms from Orange Juice Processing Waste. Water 2019, 11, 274.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop