Scaling-Up Conservation Agriculture Production System with Drip Irrigation by Integrating MCE Technique and the APEX Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Scale-Up of Field-Scale Parameters
3. Results and Discussion
3.1. Potentially Irrigable Land
3.2. Potential Crop Production under Conservation Agriculture
3.3. Groundwater Potential for Crop Production under CAPS with Drip Irrigation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tesfa, A.; Mekuriaw, S. The effect of land degradation on farm size dynamics and crop-livestock farming system in Ethiopia: A Review. Open J. Soil Sci. 2014, 4, 1. [Google Scholar] [CrossRef]
- Assefa, T.; Jha, M.; Reyes, M.; Srinivasan, R.; Worqlul, A.W. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies. Water 2018, 10, 495. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Jeong, J.; Dile, Y.T.; Osorio, J.; Schmitter, P.; Gerik, T.; Srinivasan, R.; Clark, N. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Appl. Geogr. 2017, 85, 1–13. [Google Scholar] [CrossRef]
- Getahun, K.; Van Rompaey, A.; Van Turnhout, P.; Poesen, J. Factors controlling patterns of deforestation in moist evergreen Afromontane forests of Southwest Ethiopia. For. Ecol. Manag. 2013, 304, 171–181. [Google Scholar] [CrossRef]
- Bekele, A.E. Five key constraints to small scale irrigation development in Ethiopia: Socio-Economic View. Glob. Adv. Res. J. 2014, 3, 441–444. [Google Scholar]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Assefa, T.T.; Jha, M.K.; Reyes, M.R.; Schimmel, K.; Tilahun, S.A. Commercial Home Gardens under Conservation Agriculture and Drip Irrigation for Small Holder Farming in sub-Saharan Africa. In Proceedings of the 2017 ASABE Annual International Meeting, Spokane, WC, USA, 16–19 July 2017; p. 1. [Google Scholar]
- Assefa, T.; Jha, M.; Reyes, M.; Tilahun, S.; Worqlul, A.W. Experimental Evaluation of Conservation Agriculture with Drip Irrigation for Water Productivity in Sub-Saharan Africa. Water 2019, 11, 530. [Google Scholar] [CrossRef]
- Assefa, T.; Jha, M.; Reyes, M.; Worqlul, A. Modeling the Impacts of Conservation Agriculture with a Drip Irrigation System on the Hydrology and Water Management in Sub-Saharan Africa. Sustainability 2018, 10, 4763. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. 2008, 105, 18215–18220. [Google Scholar] [CrossRef][Green Version]
- Megersa, G.; Abdulahi, J. Irrigation system in Israel: A review. Int. J. Water Resour. Environ. Eng. 2015, 7, 29–37. [Google Scholar][Green Version]
- Assefa, T.T. Experimental and Modeling Evaluation of Conservation Agriculture with Drip Irrigation for Small-Scale Agriculture in Sub-Saharan Africa; North Carolina Agricultural and Technical State University: Greensboro, NC, USA, 2018. [Google Scholar]
- Emana, B.; Afari-Sefa, V.; Dinssa, F.F.; Ayana, A.; Balemi, T.; Temesgen, M. Characterization and assessment of vegetable production and marketing systems in the Humid Tropics of Ethiopia. Q. J. Int. Agric. 2015, 54, 163–187. [Google Scholar]
- Abebe, G. Long-term climate data description in Ethiopia. Data Brief 2017, 14, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Kassie, B.; Rötter, R.; Hengsdijk, H.; Asseng, S.; Van Ittersum, M.; Kahiluoto, H.; Van Keulen, H. Climate variability and change in the Central Rift Valley of Ethiopia: Challenges for rainfed crop production. J. Agric. Sci. 2014, 152, 58–74. [Google Scholar] [CrossRef]
- Arndt, C.; Robinson, S.; Willenbockel, D. Ethiopia’s growth prospects in a changing climate: A stochastic general equilibrium approach. Glob. Environ. Chang. 2011, 21, 701–710. [Google Scholar] [CrossRef]
- Fekadu, K. Ethiopian seasonal rainfall variability and prediction using canonical correlation analysis (CCA). Earth Sci 2015, 4, 112–119. [Google Scholar] [CrossRef]
- Degefu, W. Some Aspects of Meteorological Drought in Ethiopia; Drought and Hunger in Africa; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Ayalew, G. Land suitability evaluation for surface and sprinkler irrigation using Geographical Information System (GIS) in Guang Watershed, Highlands of Ethiopia. J. Environ. Earth Sci. 2014, 4, 140–149. [Google Scholar]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Laaribi, A.; Chevallier, J.; Martel, J.M. A spatial decision aid: A multicriterion evaluation approach. Comput. Environ. Urban Syst. 1996, 20, 351–366. [Google Scholar] [CrossRef]
- Malczewksi, J.; Ogryczak, W. The multiple criteria location problem: 2. Preference-based techniques and interactive decision support. Environ. Plan. A 1996, 28, 69–98. [Google Scholar] [CrossRef]
- Chakhar, S.; Martel, J.M. Enhancing geographical information systems capabilities with multi-criteria evaluation functions. J. Geogr. Inf. Decis. Anal. 2003, 7, 47–71. [Google Scholar]
- Carver, S.J. Integrating multi-criteria evaluation with geographical information systems. Int. J. Geogr. Inf. Syst. 1991, 5, 321–339. [Google Scholar] [CrossRef][Green Version]
- Chuvieco, E. Integration of linear programming and GIS for land-use modelling. Int. J. Geogr. Inf. Sci. 1993, 7, 71–83. [Google Scholar] [CrossRef]
- Assefa, T.T.; Jha, M.K.; Tilahun, S.A.; Yetbarek, E.; Adem, A.A.; Wale, A. Identification of erosion hotspot area using GIS and MCE technique for koga watershed in the upper blue Nile Basin, Ethiopia. Am. J. Environ. Sci. 2015, 11, 245–255. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Collick, A.S.; Rossiter, D.G.; Langan, S.; Steenhuis, T.S. Assessment of surface water irrigation potential in the Ethiopian highlands: The Lake Tana Basin. Catena 2015, 129, 76–85. [Google Scholar] [CrossRef]
- Teka, K.; Van Rompaey, A.; Poesen, J. Land suitability assessment for different irrigation methods in Korir Watershed, Northern Ethiopia. J. Drylands 2010, 3, 214–219. [Google Scholar]
- Maddahi, Z.; Jalalian, A.; Zarkesh, M.M.K.; Honarjo, N. Land suitability analysis for rice cultivation using multi criteria evaluation approach and GIS. Eur. J. Exp. Biol. 2014, 4, 639–648. [Google Scholar]
- Baniya, M.S.N. Land Suitability Evaluation Using GIS for Vegetable Crops in Kathmandu Valley/Nepal. Ph.D. Thesis, Institute of Horticulture Science, Humboldt-Universität zu Berlin, Berlin, Germany, 2008. [Google Scholar]
- Hossain, M.S.; Chowdhury, S.R.; Das, N.G.; Rahaman, M.M. Multi-criteria evaluation approach to GIS-based land-suitability classification for tilapia farming in Bangladesh. Aquac. Int. 2007, 15, 425–443. [Google Scholar] [CrossRef]
- Chen, Y.; Khan, S.; Padar, Z. Irrigation intensification or extensification assessment: A GIS-based spatial fuzzy multi-criteria evaluation. In Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China, 25–27 June 2018; pp. 309–318. [Google Scholar]
- Tu, Q.; Li, H.; Wang, X.; Chen, C.; Luo, Y.; Dwomoh, F.A. Multi-criteria evaluation of small-scale sprinkler irrigation systems using Grey relational analysis. Water Resour. Manag. 2014, 28, 4665–4684. [Google Scholar] [CrossRef]
- FAO. A Framework for Land Evaluation; Soils bulletin No. 32; FAO: Rome, Italy, 1976. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Baffaut, C.; Dabney, S.M.; Smolen, M.D.; Youssef, M.A.; Bonta, J.V.; Chu, M.L.; Guzman, J.A.; Shedekar, V.S.; Jha, M.K.; Arnold, J.G. Hydrologic and water quality modeling: Spatial and temporal considerations. Trans. ASABE 2015, 58, 1661–1680. [Google Scholar]
- Guzman, J.A.; Shirmohammadi, A.; Sadeghi, A.M.; Wang, X.; Chu, M.L.; Jha, M.K.; Parajuli, P.B.; Harmel, R.D.; Khare, Y.P.; Hernandez, J.E. Uncertainty considerations in calibration and validation of hydrologic and water quality models. Trans. ASABE 2015, 58, 1745–1762. [Google Scholar]
- Jha, M.K.; Gassman, P.W.; Secchi, S.; Gu, R.; Arnold, J.G. Impact of Watershed Subdivision Level on Flows, Sediment Loads, and Nutrient Losses Predicted by SWAT. J. Am. Water Resour. Assoc. 2004, 40, 811–825. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G.; Srinivasan, R.; Ramanarayanan, T.S. APEX: A new tool for predicting the effects of climate and CO2 changes on erosion and water quality. In Modelling Soil Erosion by Water; Springer: Berlin/Heidelberg, Germany, 1998; pp. 441–449. [Google Scholar]
- Wang, X.; Yen, H.; Liu, Q.; Liu, J. An auto-calibration tool for the Agricultural Policy Environmental eXtender (APEX) model. Trans. ASABE 2014, 57, 1087–1098. [Google Scholar]
- Wang, X.; Gassman, P.; Williams, J.; Potter, S.; Kemanian, A. Modeling the impacts of soil management practices on runoff, sediment yield, maize productivity, and soil organic carbon using APEX. Soil Tillage Res. 2008, 101, 78–88. [Google Scholar] [CrossRef]
- Cavero, J.; Barros, R.; Sellam, F.; Topcu, S.; Isidoro, D.; Hartani, T.; Lounis, A.; Ibrikci, H.; Cetin, M.; Williams, J. APEX simulation of best irrigation and N management strategies for off-site N pollution control in three Mediterranean irrigated watersheds. Agric. Water Manag. 2012, 103, 88–99. [Google Scholar] [CrossRef][Green Version]
- Zhang, B.; Feng, G.; Ahuja, L.R.; Kong, X.; Ouyang, Y.; Adeli, A.; Jenkins, J.N. Soybean crop-water production functions in a humid region across years and soils determined with APEX model. Agric. Water Manag. 2018, 204, 180–191. [Google Scholar] [CrossRef]
- Jha, M.K.; Gassman, P.W.; Arnold, J.G. Water quality modeling for the Raccoon River watershed using SWAT. Trans. ASABE 2007, 50, 479–493. [Google Scholar] [CrossRef]
- Moriasi, D.N.; King, K.W.; Bosch, D.D.; Bjorneberg, D.L.; Teet, S.; Guzman, J.A.; Williams, M.R. Framework to parameterize and validate APEX to support deployment of the nutrient tracking tool. Agric. Water Manag. 2016, 177, 146–164. [Google Scholar] [CrossRef][Green Version]
- Wang, X.; Williams, J.; Gassman, P.; Baffaut, C.; Izaurralde, R.; Jeong, J.; Kiniry, J. EPIC and APEX: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1447–1462. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Chapter 6-ETc-Single crop coefficient (KC). In Crop. Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Howell, T.A. Irrigation efficiency. In Encyclopedia of Water Science; Marcel Dekker: New York, NY, USA, 2003; pp. 467–472. [Google Scholar]
- Altchenko, Y.; Villholth, K.G. Mapping irrigation potential from renewable groundwater in Africa—A quantitative hydrological approach. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 6065–6097. [Google Scholar] [CrossRef]
- Mohan, S.; Simhadrirao, B.; Arumugam, N. Comparative study of effective rainfall estimation methods for lowland rice. Water Resour. Manag. 1996, 10, 35–44. [Google Scholar] [CrossRef]
- Howsam, P.; Carter, R.C. Water Policy: Allocation and management in practice. In Proceedings of the International Conference on Water Policy, London, UK, 23–24 September 1996; p. 384. [Google Scholar]
- FAO. Guidelines for Land Use Planning; Development Series 1; Soil Resources, Management and Conservation Service; Food and Agricultural Organization—FAO: Rome, Italy, 1993. [Google Scholar]
- Chen, L.; Chan, C.M.; Lee, H.C.; Chung, Y.; Lai, F. Development of a decision support engine to assist patients with hospital selection. J. Med. Syst. 2014, 38, 59. [Google Scholar] [CrossRef] [PubMed]
- Koczkodaj, W.W.; Mikhailov, L.; Redlarski, G.; Soltys, M.; Szybowski, J.; Tamazian, G.; Wajch, E.; Yuen, K.K.F. Important Facts and Observations about Pairwise Comparisons (the special issue edition). Fundam. Inform. 2016, 144, 291–307. [Google Scholar] [CrossRef][Green Version]
- Gebregziabher, G. Water Lifting Irrigation Technology Adoption in Ethiopia: Challenges and Opportunities. AgWater Case Study. Available online: http://awm-solutions.iwmi.org/Data/Sites/3/Documents/PDF/et-water-lifting-devices.pdf (accessed on 12 December 2012).
- CSA. [Ethiopia] Agricultural Sample Survey 2009/2010 (2002 E.C.) (September–December, 2009) Volume IV, Report on Area and Production of Crops Development; Central Statistical Agency-Ministry of Finance and Economic Development: Addis Ababa, Ethiopia, 2010; Volume 446.
Data | Source | Spatial Resolution (m) |
---|---|---|
Land use | World land use database (LADA), Food and Agricultural Organization (FAO), 2010 | 10,000 |
Soil | Africa Soil Information Service (AFSIS), 2015 | 250 |
Digital Elevation Model (DEM) | Unites States Geographical Survey (USGS), 2000 (2015 release) | 30 |
Population density | Global gridded pupation database, 2000 | 1000 |
MODIS potential evapotranspiration (mm) | MOD16 Global Terrestrial Evapotranspiration data set (2000–2010) | 1000 |
Potential borehole yield (L/s) | British Geological Survey (BGS), 2012 | 5000 |
Groundwater depth (m) | British Geological Survey (BGS), 2012 | 5000 |
Rainfall (mm) | Ethiopian National Meteorological Agency (ENMA), 2000 to 2010 | - |
Factors | Slope | Road Proximity | Population Density | Land Use | Eigenvector | Weight (%) |
---|---|---|---|---|---|---|
Slope | 1.0 | 2.0 | 4.0 | 3.0 | 2.2 | 46.3 |
Road | 1/2 | 1.0 | 3.0 | 2.0 | 1.3 | 27.5 |
Population density | 1/4 | 1/3 | 1.0 | 1/3 | 0.4 | 8.5 |
Land use | 1/3 | 1/2 | 3.0 | 1.0 | 0.8 | 17.6 |
Administrative Region | Irrigable land (1000 ha) | Groundwater Potential on the Irrigable Land (1000 ha) | |||
---|---|---|---|---|---|
Garlic | Onion | Tomato | Cabbage | ||
Addis Ababa | 9.3 | 1.2 | 3.0 | 0.0 | 0.0 |
Afar | 1539.0 | 255.5 | 303.6 | 239.8 | 236.0 |
Amhara | 2628.0 | 459.2 | 787.3 | 291.4 | 230.0 |
Benshangul-Gumaz | 327.0 | 9.6 | 20.0 | 5.9 | 2.7 |
Dire Dawa | 16.7 | 1.5 | 1.5 | 1.5 | 1.5 |
Gambela Peoples | 320.0 | 32.9 | 86.2 | 10.8 | 0.9 |
Harari People | 11.4 | 0.0 | 0.0 | 0.0 | 0.0 |
Oromia | 6621.0 | 946.7 | 1473.5 | 644.8 | 553.0 |
Somali | 3990.0 | 49.0 | 55.2 | 48.2 | 46.8 |
SNNP | 1910.0 | 369.7 | 570.0 | 254.9 | 222.0 |
Tigray | 1326.0 | 152.0 | 175.3 | 148.0 | 146.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assefa, T.; Jha, M.; Worqlul, A.W.; Reyes, M.; Tilahun, S. Scaling-Up Conservation Agriculture Production System with Drip Irrigation by Integrating MCE Technique and the APEX Model. Water 2019, 11, 2007. https://doi.org/10.3390/w11102007
Assefa T, Jha M, Worqlul AW, Reyes M, Tilahun S. Scaling-Up Conservation Agriculture Production System with Drip Irrigation by Integrating MCE Technique and the APEX Model. Water. 2019; 11(10):2007. https://doi.org/10.3390/w11102007
Chicago/Turabian StyleAssefa, Tewodros, Manoj Jha, Abeyou W. Worqlul, Manuel Reyes, and Seifu Tilahun. 2019. "Scaling-Up Conservation Agriculture Production System with Drip Irrigation by Integrating MCE Technique and the APEX Model" Water 11, no. 10: 2007. https://doi.org/10.3390/w11102007