Variations of Fluvial Sediment Transport after Large Earthquakes: Field Study in Taiwan Catchments
Abstract
:1. Introduction
2. Study Methods
2.1. Calculation of Suspended Sediment Discharges
2.2. Measurements of Rock Strength and Joint Density
3. Earthquake Effects on Sediment Yields
3.1. Changes in Observation Sediment Data
3.2. Influence of Earthquake Frequency on Sediment Discharge
4. Recovery Periods of Fluvial Sediment Transport
5. Influence Factors for Sediment Supply
6. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Sella, G.F.; Dixon, T.H.; Mao, A. REVEL: A model for recent plate velocities from space geodesy. J. Geophys. Res. 2002, 107, 2081. [Google Scholar] [CrossRef]
- Wu, Y.H.; Chen, C.C.; Turcotte, D.L.; Rundle, J.B. Quantifying the seismicity on Taiwan. Geophys. J. Int. 2013, 194, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.H. Denudation of Taiwan Island since the Pliocene epoch. Geology 1976, 4, 105–107. [Google Scholar] [CrossRef]
- Hwang, C.E. Suspended sediment of Taiwan Rivers and their geomorphological significance. Bull. Nation Taiwan Normal Univ. 1982, 27, 649–677. [Google Scholar]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Hsieh, M.L.; Willett, S.D.; Hu, J.C.; Horng, M.J.; Chen, M.C.; Stark, C.P.; et al. Links between erosion, runoff variability and seismicity in the Taiwan orogeny. Nature 2003, 426, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Lin, J.C.; Hsu, M.L.; Lin, C.W.; Horng, M.J.; Chen, C.T.; Milliman, J.; et al. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 2004, 32, 733–736. [Google Scholar] [CrossRef]
- Lin, G.W.; Chen, H.; Chen, Y.H.; Horng, M.J. Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Eng. Geol. 2008, 97, 32–41. [Google Scholar] [CrossRef]
- Chuang, S.C.; Chen, H.; Lin, G.W.; Lin, C.W.; Chang, C.P. Increase in basin sediment yield from landslides in storms following major seismic disturbance. Eng. Geol. 2009, 103, 59–65. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Khazai, B.; Sitar, N. Assessment of seismic slope stability using GIS modeling. Geogr. Inf. Sci. 2000, 6, 121–128. [Google Scholar] [CrossRef]
- Koi, T.; Hotta, N.; Ishigaki, I.; Matuzai, N.; Uchiyama, Y.; Suzuki, M. Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: The Tanzawa region, Japan. Geomorphology 2008, 101, 692–702. [Google Scholar] [CrossRef]
- Hovius, N.; Meunier, P.; Lin, C.W.; Chen, H.; Chen, Y.G.; Dadson, S.; Horng, M.J.; Lines, M. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet. Sci. Lett. 2011, 304, 347–355. [Google Scholar] [CrossRef]
- Water Resources Agency (WRA). Hydrological Yearbook of Taiwan; Water Resources Agency, Ministry of Economic Affairs: Taichung, Taiwan, 1970–2015. (In Chinese) [Google Scholar]
- Cohn, T.A. Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers. Rev. Geophys. 1995, 33, 1117–1123. [Google Scholar] [CrossRef]
- Kao, S.J.; Chan, S.C.; Kuo, C.H.; Liu, K.K. Transport-dominated sediment loading in Taiwanese rivers: A case study from the Ma-an stream. J. Geol. 2005, 113, 217–225. [Google Scholar] [CrossRef]
- Hovius, N.; Stark, C.P.; Chu, H.T.; Lin, J.C. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J. Geol. 2000, 108, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Juez, C.; Hassan, M.A.; Franca, M.J. The origin of fine sediment determines the observations of suspended sediment fluxes under unsteady flow conditions. Water Resour. Res. 2018, 54, 5654–5669. [Google Scholar] [CrossRef]
- International Society for Rock Mechanics (ISRM). Rock Characterization Testing & Monitoring: ISRM Suggested Methods; Pergamon Press: Oxford, NY, USA, 1981; pp. 1–121. ISBN 0080273092. [Google Scholar]
- Seed, H.B.; Idriss, I.M. Ground Motions and Soil Liquefaction During Earthquakes; Earthquake Engineering Research Institute: Oakland, CA, USA, 1982; ISBN 9780943198248. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 2nd ed.; Wiley: Hoboken, NJ, USA, 1981; ISBN 9780471029953. [Google Scholar]
Influence Factor | R2 * | Efficiency (%) |
---|---|---|
average annual runoff (Q, km3/year) | 0.276 | 56.2 |
average uniaxial compressive strength (UCS, MPa) | 0.815 | 18.5 |
average joint density (Jv, m−3) | 0.966 | 3.4 |
seismic frequency (Eq, year−1) | 0.943 | 5.7 |
others | 0.838 | 16.2 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.-W. Variations of Fluvial Sediment Transport after Large Earthquakes: Field Study in Taiwan Catchments. Water 2018, 10, 1836. https://doi.org/10.3390/w10121836
Lin G-W. Variations of Fluvial Sediment Transport after Large Earthquakes: Field Study in Taiwan Catchments. Water. 2018; 10(12):1836. https://doi.org/10.3390/w10121836
Chicago/Turabian StyleLin, Guan-Wei. 2018. "Variations of Fluvial Sediment Transport after Large Earthquakes: Field Study in Taiwan Catchments" Water 10, no. 12: 1836. https://doi.org/10.3390/w10121836
APA StyleLin, G.-W. (2018). Variations of Fluvial Sediment Transport after Large Earthquakes: Field Study in Taiwan Catchments. Water, 10(12), 1836. https://doi.org/10.3390/w10121836