Abstract
The COVID-19 pandemic led to an unprecedented slowdown in global economic and transportation activities, offering a unique opportunity to assess the relationship between human activity and atmospheric pollution. This study analyzes global variations in major air pollutants and meteorological conditions during the pandemic period using multi-satellite and reanalysis datasets. Nitrogen dioxide (NO2) data were obtained from the OMI sensor aboard NASA’s Aura satellite, while carbon monoxide (CO) observations were taken from the MOPITT instrument on Terra. Reanalysis products from MERRA-2 were used to assess CO, sulfur dioxide (SO2), black carbon (BC), organic carbon (OC), and key meteorological variables, including temperature, precipitation, evaporation, wind speed, and direction. Average concentrations of pollutants for April, May, and June 2020, representing the lockdown phase, were compared with the average values of the same months during 2017–2019, representing pre-pandemic conditions. The difference between these multi-year means was used to quantify spatial changes in pollutant levels. Results reveal widespread reductions in NO2, CO, SO2, and BC concentrations across major industrial and urban regions worldwide, consistent with decreased anthropogenic activity during lockdowns. Meteorological analysis indicates that the observed reductions were not primarily driven by short-term weather variability, confirming that the declines are largely attributable to reduced emissions. Unlike most previous studies, which examined local or regional air-quality changes, this work provides a consistent global-scale assessment using harmonized multi-sensor datasets and uniform temporal baselines. These findings highlight the strong influence of human activities on atmospheric composition and demonstrate how large-scale behavioral and economic shifts can rapidly alter air quality on a global scale. The results also provide valuable baseline information for understanding emission–climate interactions and for guiding post-pandemic strategies aimed at sustainable air-quality management.