Spatiotemporal Patterns of 45-Day Precipitation in Rio Grande Do Sul State, Brazil: Implications for Adaptation to Climate Variation
Abstract
1. Introduction
2. Material and Methods
2.1. Area Characterization
2.2. Methodology
2.2.1. Descriptive Analysis
2.2.2. Spatial Analysis and Oceanic Niño Index
- Y is the precipitation anomaly;
- X is the ONI value;
- β0 is the intercept;
- β1 is the slope (regression coefficient);
- ε is the residual error.
2.2.3. Temporal Autocorrelation Analysis
2.2.4. Spatial-Temporal Multivariate Analysis and SPI
- is the number of observations;
- is the number of variables;
- is the determinant of the correlation matrix.
- is the correlation coefficient of the correlation matrix;
- is the coefficient of the partial correlation matrix.
- is the principal component matrix;
- is the matrix of eigenvectors (principal components);
- is the original data matrix.
- PCA allowed the identification of dominant spatial modes of precipitation variability across Rio Grande do Sul, and the first few components (typically those explaining >70% of the variance) were retained for exploratory interpretation. Loadings and scree plots were analyzed to define the number of relevant components.
- The PCA was implemented using the prcomp() function in R, with scaling enabled to ensure the equal weight of all input variables. Spatial patterns associated with the first components were mapped to detect regional rainfall regimes or transitions in anomaly behavior.
- is the observed precipitation;
- is the average precipitation;
- is the standard deviation of precipitation.
- SPI < −1.5: Severe drought;
- −1.5 < SPI < −1: Moderate drought;
- −1 < SPI < 1: Normal;
- 1 < SPI < 1.5: Moderate wetness;
- SPI > 1.5: Severe wetness.
3. Results and Discussion
3.1. Spatial Descriptive Analysis
3.2. Temporal Descriptive Analysis
3.3. Relationship Between Precipitation Patterns and Oceanic Niño Index
3.4. Autocorrelation Analysis of Precipitation
3.5. Multiple Spatio-Temporal Analysis with Precipitation Anomaly Index
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Spatial Distribution of Precipitation During the Studied Periods
Appendix B. Google Earth Engine (GEE) Script Used to Extract the CHIRPS Precipitation Time Series
// Região de interesse |
var RS = ee.FeatureCollection(‘users/luananunescenteno/RS_Inteiro’); |
// Dados chuvas |
var prec = ee.ImageCollection(“UCSB-CHG/CHIRPS/DAILY”) |
.filterDate(‘xxxxx′, ‘xxxxxx′) |
.map(function(image) { |
return image.clip(RS); |
}); |
// Função para calcular a soma a cada 45 dias |
var calculateSumEvery45Days = function(startDate) { |
var endDate = startDate.advance(45, ‘day’); |
var filteredPrecipitation = prec.filterDate(startDate, endDate); |
var sumPrecipitation = filteredPrecipitation.sum(); |
return sumPrecipitation.set(‘system:time_start’, startDate.millis()); |
}; |
// Definir intervalo de datas |
var startDate = ee.Date(‘xxxxxxx′); |
var endDate = ee.Date(‘xxxxxx′); |
var interval = xxxxx*xxxx*xxxx 1000;//Intervalo em milissegundos |
var dateList = ee.List.sequence(startDate.millis(), endDate.millis(), interval); |
// Mapear a função sobre a lista de datas e criar a coleção de imagens das somas |
var precipitation_sum_45days = ee.ImageCollection.fromImages( |
dateList.map(function(time) { |
var startDate = ee.Date(time); |
var endDate = startDate.advance(45, ‘day’); |
return calculateSumEvery45Days(startDate); |
}) |
); |
// Definição dos parâmetros de visualização |
var visParams = { |
palette: [‘red’, ‘orange’, ‘yellow’, ‘green’, ‘blue’], |
min: 80, |
max: 380 |
}; |
// Adicionar as imagens de soma a cada 45 dias ao mapa |
Map.addLayer(precipitation_sum_45days, visParams, ‘Precipitation Sum’); |
// Exportar imagens de soma a cada 45 dias |
var imageCount = precipitation_sum_45days.size().getInfo(); |
// Dentro do loop de exportação |
for (var index = 0; index < imageCount; index++) { |
var img = ee.Image(precipitation_sum_45days.toList(imageCount).get(index)); |
var description = ‘imagem’ + (index + 1); |
// Configurar parâmetros de exportação |
var exportParams = { |
image: img, |
description: description, |
folder: “” |
fileNamePrefix: description, |
crs: ‘EPSG:3857′, |
scale: 5000, |
maxPixels: 1e13, |
fileFormat: ‘GeoTIFF’ |
}; |
// Iniciar a tarefa de exportação |
Export.image.toDrive(exportParams); |
print(‘Exporting:‘, description); |
} |
References
- Raihan, A. A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. J. Environ. Sci. Econ. 2023, 2, 36–58. [Google Scholar] [CrossRef]
- Abebe, W.T.; Endalie, D. Artificial intelligence models for prediction of monthly rainfall without climatic data for meteorological stations in Ethiopia. J. Big Data 2023, 10, 1147–1158. [Google Scholar] [CrossRef]
- Hussain, M.A.; Shuai, Z.; Moawwez, M.A.; Umar, T.; Iqbal, M.R.; Kamran, M.; Muneer, M. A Review of Spatial Variations of Multiple Natural Hazards and Risk Management Strategies in Pakistan. Water 2023, 15, 407. [Google Scholar] [CrossRef]
- Sobel, A.H.; Kim, D.; Lin, H.; Zhang, C. The Madden–Julian Oscillation: A window into the subseasonal prediction problem. Bull. Am. Meteorol. Soc. 2024, 105, E1449–E1466. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, C.; Chen, M.; Kim, D. Madden–Julian Oscillation. In Subseasonal to Seasonal Prediction: The Gap Between Weather and Climate; Elsevier: Amsterdam, The Netherlands, 2025; pp. 325–342. [Google Scholar] [CrossRef]
- Alvalá, R.C.S.; Ribeiro, D.F.; Marengo, J.A.; Seluchi, M.E.; Gonçalves, D.A.; da Silva, L.A.; Pineda, L.A.C.; Saito, S.M. Analysis of the hydrological disaster occurred in the state of Rio Grande do Sul, Brazil in September 2023: Vulnerabilities and risk management capabilities. Int. J. Disaster Risk Reduct. 2024, 110, 104645. [Google Scholar] [CrossRef]
- Arruda, A.M.; de Centeno, L.N.; Nunes, A.B. Relation between major climatic indices and subseasonal precipitation in Rio Grande do Sul State, Brazil. Meteorology 2025, 4, 5. [Google Scholar] [CrossRef]
- Pillar, V.D.; Overbeck, G.E. Learning from a climate disaster: The catastrophic floods in southern Brazil. Science 2024, 385, eadr8356. [Google Scholar] [CrossRef]
- Rizzotto, M.L.F.; Costa, A.M.; Lobato, L.d.V.d.C. Climate crisis and new challenges for health systems: The case of floods in Rio Grande do Sul/Brazil. Saúde Em Debate 2024, 48, e141ED. [Google Scholar] [CrossRef]
- Grimm, A.M.; Zilli, M.T. Interannual variability and seasonal evolution of summer monsoon rainfall in South America. J. Clim. 2009, 22, 2257–2275. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; Firpo, M.A.F.; de Andrade, F.M. A verification framework for South American sub-seasonal precipitation predictions. Meteorol. Z. 2018, 27, 503–520. [Google Scholar] [CrossRef]
- Scheuerer, M.; Switanek, M.B.; Worsnop, R.P.; Hamill, T.M. Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California. Mon. Weather. Rev. 2020, 148, 3489–3506. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, H.; Chen, M.; Kim, D. Advances in understanding the Madden–Julian Oscillation. Adv. Atmos. Sci. 2025, 42, 1045–1063. [Google Scholar] [CrossRef]
- Zhou, S.; L’Heureux, M.; Weaver, S.; Kumar, A. A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States. Clim. Dyn. 2012, 38, 1459–1471. [Google Scholar] [CrossRef]
- Hidayat, R. Modulation of Indonesian rainfall variability by the Madden–Julian Oscillation. Procedia Environ. Sci. 2016, 33, 167–177. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Fu, X.; Wang, B. Predictability and prediction of the Madden-Julian Oscillation: A review on progress and current status. In The Global Monsoon System; World Scientific: Singapore, 2017; pp. 147–159. [Google Scholar] [CrossRef]
- Badagian, J.; Barreiro, M.; Saurral, R.I. Evaluation of subseasonal precipitation forecasts in the Uruguay River basin. Int. J. Climatol. 2024. advance online publication. [Google Scholar] [CrossRef]
- Bergamaschi, H.; Wheeler, T.R.; Challinor, A.J.; Comiran, F.; Heckler, B.M.M. Maize yield and rainfall on different spatial and temporal scales in Southern Brazil. Pesqui. Agropecuária Bras. 2007, 42, 603–613. [Google Scholar] [CrossRef]
- Alam, J.; Saha, P.; Mitra, R.; Das, J. Investigation of spatio-temporal variability of meteorological drought in the Luni River Basin, Rajasthan, India. Arab. J. Geosci. 2023, 16, 1–22. [Google Scholar] [CrossRef]
- Grimm, A.M.; Padoan, D. Explaining Climate Change in South America. 2025. Available online: https://meetingorganizer.copernicus.org/EGU25/EGU25-979.html (accessed on 15 March 2025).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Atlas Socioeconômico do Rio Grande do Sul. 2025. Available online: https://cidades.ibge.gov.br/brasil/rs/panorama (accessed on 15 March 2025).
- Kuinchtner, A.; Buriol, G.A. Clima do Estado do Rio Grande do Sul segundo a classificação climática de Köppen e Thornthwaite. Discip. Sci. Nat. E Tecnológicas 2001, 2, 171–182. Available online: https://periodicos.ufn.edu.br/index.php/disciplinarumNT/article/view/1136/1077 (accessed on 15 March 2025).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. Available online: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (accessed on 15 March 2025).
- Alemu, M.M.; Bawoke, G.T. Analysis of spatial variability and temporal trends of rainfall in Amhara region, Ethiopia. J. Water Clim. Change 2020, 11, 1505–1520. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Silva, A.S.A.; Menezes, R.S.C.; Rosso, O.A.; Stosic, B.; Stosic, T. Complexity entropy-analysis of monthly rainfall time series in northeastern Brazil. Chaos Solitons Fractals 2021, 143, 110623. [Google Scholar] [CrossRef]
- Fahad, S.; Su, F.; Khan, S.U.; Naeem, M.R.; Wei, K. Implementing a novel deep learning technique for rainfall forecasting via climatic variables: An approach via hierarchical clustering analysis. Sci. Total Environ. 2023, 854, 15. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.A.C.; dos Neale, C.M.U.; Mekonnen, M.M.; Gonçalves, I.Z.; Oliveira, G.; de Ruiz-Alvarez, O.; Safa, B.; Rowe, C.M. Trends of extreme air temperature and precipitation and their impact on corn and soybean yields in Nebraska, USA. Theor. Appl. Climatol. 2022, 147, 1379. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mukherjee, S.; Mishra, A.K.; Mann, M.E.; Williams, A.P. Climate change will accelerate the high-end risk of compound drought and heatwave events. Proc. Natl. Acad. Sci. USA 2023, 120, e2219825120. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Pathak, H. Impact, adaptation, and mitigation of climate change in Indian agriculture. Environ. Monit. Assess. 2022, 195, 1–22. [Google Scholar] [CrossRef]
Year | DJF | JFM | FMA | MAM | AMJ | MJJ | JJA | JAS | ASO | SON | OND | NDJ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2006 | −0.9 | −0.8 | −0.6 | −0.4 | −0.1 | 0 | 0.1 | 0.3 | 0.5 | 0.8 | 0.9 | 0.9 |
2007 | 0.7 | 0.2 | −0.1 | −0.3 | −0.4 | −0.5 | −0.6 | −0.8 | −1.1 | −1.3 | −1.5 | −1.6 |
2008 | −1.6 | −1.5 | −1.3 | −1 | −0.8 | −0.6 | −0.4 | −0.2 | −0.2 | −0.4 | −0.6 | −0.7 |
2009 | −0.8 | −0.8 | −0.6 | −0.3 | 0 | 0.3 | 0.5 | 0.6 | 0.7 | 1 | 1.4 | 1.6 |
2010 | 1.5 | 1.2 | 0.8 | 0.4 | −0.2 | −0.7 | −1 | −1.3 | −1.6 | −1.6 | −1.6 | −1.6 |
2011 | −1.4 | −1.2 | −0.9 | −0.7 | −0.6 | −0.4 | −0.5 | −0.6 | −0.8 | −1 | −1.1 | −1 |
2012 | −0.9 | −0.7 | −0.6 | −0.5 | −0.3 | 0 | 0.2 | 0.4 | 0.4 | 0.3 | 0.1 | −0.2 |
2013 | −0.4 | −0.4 | −0.3 | −0.3 | −0.4 | −0.4 | −0.4 | −0.3 | −0.3 | −0.2 | −0.2 | −0.3 |
2014 | −0.4 | −0.5 | −0.3 | 0 | 0.2 | 0.2 | 0 | 0.1 | 0.2 | 0.5 | 0.6 | 0.7 |
2015 | 0.5 | 0.5 | 0.5 | 0.7 | 0.9 | 1.2 | 1.5 | 1.9 | 2.2 | 2.4 | 2.6 | 2.6 |
2016 | 2.5 | 2.1 | 1.6 | 0.9 | 0.4 | −0.1 | −0.4 | −0.5 | −0.6 | −0.7 | −0.7 | −0.6 |
2017 | −0.3 | −0.2 | 0.1 | 0.2 | 0.3 | 0.3 | 0.1 | −0.1 | −0.4 | −0.7 | −0.8 | −1 |
2018 | −0.9 | −0.9 | −0.7 | −0.5 | −0.2 | 0 | 0.1 | 0.2 | 0.5 | 0.8 | 0.9 | 0.8 |
2019 | 0.7 | 0.7 | 0.7 | 0.7 | 0.5 | 0.5 | 0.3 | 0.1 | 0.2 | 0.3 | 0.5 | 0.5 |
2020 | 0.5 | 0.5 | 0.4 | 0.2 | −0.1 | −0.3 | −0.4 | −0.6 | −0.9 | −1.2 | −1.3 | −1.2 |
2021 | −1 | −0.9 | −0.8 | −0.7 | −0.5 | −0.4 | −0.4 | −0.5 | −0.7 | −0.8 | −1 | −1 |
2022 | −1 | −0.9 | −1 | −1.1 | −1 | −0.9 | −0.8 | −0.9 | −1 | −1 | −0.9 | −0.8 |
Principal Component | Variance (%) | Accumulated Variance (%) | |||||
---|---|---|---|---|---|---|---|
1 | 26.002 | 26.002 | |||||
2 | 14.618 | 40.619 | |||||
3 | 10.760 | 51.380 | |||||
4 | 6.459 | 57.839 | |||||
5 | 4.573 | 62.413 | |||||
6 | 4.036 | 66.449 | |||||
7 | 3.933 | 70.382 | |||||
Precipitation | Principal Component | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Precipitation 6 | 0.70 | 0.18 | 0.18 | −0.03 | 0.05 | 0.03 | 0.16 |
Precipitation 7 | −0.06 | 0.82 | 0.16 | −0.15 | −0.01 | 0.10 | 0.01 |
Precipitation 13 | 0.89 | −0.16 | 0.04 | 0.05 | −0.01 | −0.09 | −0.09 |
Precipitation 16 | 0.37 | 0.01 | 0.77 | −0.02 | 0.08 | −0.06 | −0.13 |
Precipitation 19 | 0.76 | 0.16 | 0.13 | −0.04 | 0.09 | −0.05 | −0.09 |
Precipitation 23 | 0.56 | 0.71 | 0.11 | −0.03 | 0.07 | −0.21 | −0.12 |
Precipitation 24 | 0.42 | −0.01 | 0.70 | 0.00 | 0.14 | −0.10 | 0.02 |
Precipitation 27 | 0.01 | −0.14 | 0.78 | −0.07 | 0.11 | −0.13 | 0.01 |
Precipitation 29 | 0.79 | 0.25 | 0.13 | −0.09 | 0.05 | −0.06 | 0.10 |
Precipitation 30 | 0.84 | −0.07 | −0.22 | 0.21 | −0.08 | 0.09 | 0.10 |
Precipitation 31 | 0.75 | 0.04 | 0.37 | 0.11 | 0.03 | −0.14 | −0.07 |
Precipitation 32 | −0.43 | 0.73 | −0.18 | 0.09 | −0.09 | 0.10 | 0.13 |
Precipitation 35 | 0.70 | 0.14 | 0.29 | −0.13 | 0.23 | −0.06 | 0.07 |
Precipitation 36 | 0.78 | 0.05 | 0.13 | 0.01 | 0.08 | −0.10 | −0.13 |
Precipitation 39 | 0.73 | 0.48 | 0.01 | −0.03 | 0.09 | −0.12 | 0.04 |
Precipitation 40 | 0.84 | −0.04 | 0.26 | 0.03 | 0.06 | −0.13 | −0.08 |
Precipitation 42 | 0.72 | 0.23 | 0.02 | 0.05 | 0.07 | −0.10 | −0.16 |
Precipitation 43 | 0.84 | 0.01 | 0.16 | −0.01 | 0.02 | 0.00 | −0.03 |
Precipitation 45 | 0.89 | −0.08 | −0.03 | −0.06 | 0.00 | −0.03 | 0.16 |
Precipitation 51 | 0.08 | 0.08 | 0.34 | 0.01 | 0.86 | −0.10 | −0.08 |
Precipitation 52 | 0.48 | −0.11 | −0.16 | 0.07 | 0.73 | 0.05 | 0.06 |
Precipitation 56 | 0.07 | 0.89 | 0.02 | 0.03 | 0.02 | −0.05 | −0.16 |
Precipitation 58 | 0.16 | 0.38 | 0.18 | −0.12 | 0.81 | −0.03 | −0.02 |
Precipitation 60 | 0.77 | −0.21 | 0.30 | −0.04 | 0.09 | 0.03 | −0.11 |
Precipitation 64 | 0.83 | 0.27 | 0.24 | −0.08 | 0.07 | −0.08 | 0.06 |
Precipitation 68 | 0.90 | 0.31 | 0.06 | −0.03 | 0.12 | −0.04 | 0.00 |
Precipitation 69 | −0.25 | −0.17 | −0.23 | 0.12 | −0.06 | 0.80 | 0.21 |
Precipitation 71 | 0.35 | −0.01 | −0.11 | 0.27 | −0.14 | 0.31 | 0.41 |
Precipitation 72 | −0.18 | 0.80 | 0.09 | 0.10 | 0.05 | −0.11 | −0.10 |
Precipitation 76 | 0.79 | −0.07 | −0.06 | 0.16 | −0.02 | 0.11 | −0.18 |
Precipitation 77 | 0.73 | −0.01 | −0.18 | 0.02 | −0.05 | 0.27 | 0.05 |
Precipitation 79 | 0.11 | 0.08 | −0.09 | 0.90 | −0.06 | 0.09 | 0.12 |
Precipitation 80 | 0.14 | 0.92 | 0.02 | 0.02 | 0.07 | −0.15 | 0.05 |
Precipitation 86 | 0.78 | −0.17 | −0.27 | 0.07 | −0.07 | 0.19 | 0.12 |
Precipitation 87 | 0.39 | 0.74 | −0.20 | 0.27 | −0.03 | −0.04 | 0.04 |
Precipitation 91 | 0.05 | 0.73 | −0.17 | 0.19 | 0.02 | 0.07 | 0.28 |
Precipitation 92 | 0.04 | 0.71 | 0.34 | −0.26 | 0.03 | −0.06 | −0.04 |
Precipitation 94 | −0.26 | −0.14 | 0.85 | −0.01 | 0.01 | 0.09 | 0.01 |
Precipitation 96 | 0.71 | 0.02 | −0.04 | −0.09 | 0.03 | 0.28 | 0.12 |
Precipitation 97 | 0.31 | 0.02 | 0.80 | −0.04 | 0.06 | 0.04 | −0.09 |
Precipitation 105 | 0.24 | 0.81 | 0.22 | −0.14 | 0.03 | 0.07 | 0.01 |
Precipitation 109 | 0.19 | 0.78 | −0.12 | −0.07 | 0.07 | −0.04 | −0.14 |
Precipitation 134 | 0.83 | 0.21 | 0.17 | 0.09 | 0.04 | −0.12 | 0.13 |
Precipitation 136 | −0.01 | −0.24 | 0.71 | −0.04 | 0.01 | 0.08 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecconello, L.C.; Arruda, A.M.d.; Nunes, A.B.; Siqueira, T.M. Spatiotemporal Patterns of 45-Day Precipitation in Rio Grande Do Sul State, Brazil: Implications for Adaptation to Climate Variation. Atmosphere 2025, 16, 963. https://doi.org/10.3390/atmos16080963
Cecconello LC, Arruda AMd, Nunes AB, Siqueira TM. Spatiotemporal Patterns of 45-Day Precipitation in Rio Grande Do Sul State, Brazil: Implications for Adaptation to Climate Variation. Atmosphere. 2025; 16(8):963. https://doi.org/10.3390/atmos16080963
Chicago/Turabian StyleCecconello, Luana Centeno, Angela Maria de Arruda, André Becker Nunes, and Tirzah Moreira Siqueira. 2025. "Spatiotemporal Patterns of 45-Day Precipitation in Rio Grande Do Sul State, Brazil: Implications for Adaptation to Climate Variation" Atmosphere 16, no. 8: 963. https://doi.org/10.3390/atmos16080963
APA StyleCecconello, L. C., Arruda, A. M. d., Nunes, A. B., & Siqueira, T. M. (2025). Spatiotemporal Patterns of 45-Day Precipitation in Rio Grande Do Sul State, Brazil: Implications for Adaptation to Climate Variation. Atmosphere, 16(8), 963. https://doi.org/10.3390/atmos16080963