Changed Relationship between the Spring North Atlantic Tripole Sea Surface Temperature Anomalies and the Summer Meridional Shift of the Asian Westerly Jet
Abstract
:1. Introduction
2. Datasets and Methods
3. Interannual Variability of the Summer AWJ and Its Relationship with the Preceding Spring TNAT Anomalies
4. Interdecadal Change in the Relationship between the Spring TNAT Anomalies and the Following Summer MSJ
5. Mechanisms for the Strengthened Relationship between the Spring TNAT Anomalies and the Following Summer MSJ
5.1. Interdecadal Change in the Intensity of the Spring TNAT Anomalies
5.2. Interdecadal Change in the TNAT-Induced Pan-Tropical Ocean–Atmospheric Interactions
5.3. Interdecadal Change in the Summer AWJ Responses
6. Conclusions and Discussions
6.1. Conclusions
6.2. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, D.; Tao, S.; Li, M. The catastrophe of general circulation in June and October. Acta Meteorol. Sin. 1958, 29, 250–263. (In Chinese) [Google Scholar]
- Zhang, Q.; Tao, S. Influence of Asian mid-high latitude circulation on East Asian summer rainfall. Acta Meteorol. Sin. 1998, 56, 199–211. (In Chinese) [Google Scholar]
- Du, Y.; Zhang, Y.; Xie, Z. Location variation of the East Asian subtropical westerly jet and its effect on the summer precipitation anomaly over eastern China. Chin. J. Atmos. Sci. 2009, 33, 581–592. (In Chinese) [Google Scholar]
- Zhang, Q.; Xuan, S.; Sun, S. Anomalous circulation characteristics of intraseasonal variation of East Asian subtropical westerly jet in summer and precursory signals. Chin. J. Atmos. Sci. 2018, 42, 935–950. (In Chinese) [Google Scholar]
- Yang, N.; Jin, R.; Xiao, T.; Sun, X. Propagation of Rossby wave along Asian subtropical westerly jet in summer and its impact on anomaly of precipitation in China. Meteorol. Mon. 2020, 46, 1–14. (In Chinese) [Google Scholar]
- Lin, Z.; Lu, R. Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci. 2005, 22, 199–211. [Google Scholar]
- Lu, R.; Hong, Y.; Jhun, J.-G. Weakening of interannual variability in the summer East Asian upper-tropospheric westerly jet since the mid-1990s. Adv. Atmos. Sci. 2011, 28, 1246–1258. [Google Scholar] [CrossRef]
- Yan, Y.; Li, C.; Lu, R. Meridional displacement of the East Asian upper-tropospheric westerly jet and its relationship with the East Asian summer rainfall in CMIP5 simulations. Adv. Atmos. Sci. 2019, 36, 1203–1216. [Google Scholar] [CrossRef]
- Li, S.; Sato, T.; Nakamura, T.; Guo, W. Asian summer rainfall stimulated by subseasonal Indian monsoonal heating. Nat. Commun. 2023, 14, 5932. [Google Scholar] [CrossRef]
- Kosaka, Y.; Chowdary, J.S.; Xie, S.-P.; Min, Y.-M.; Lee, J.-Y. Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Clim. 2012, 25, 7574–7589. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Hu, Z.-Z. The record-breaking Meiyuin 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci. 2021, 38, 1980–1993. [Google Scholar] [CrossRef]
- Zhou, Z.-Q.; Xie, S.-P.; Zhang, R. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA 2021, 118, e2022255118. [Google Scholar] [CrossRef]
- Lu, R. Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Jpn. Ser. II 2004, 82, 155–165. [Google Scholar] [CrossRef]
- Lu, R.; Lin, Z. Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Clim. 2009, 22, 2058–2072. [Google Scholar] [CrossRef]
- Liao, Q.; Gao, S.; Wang, H.; Tao, S. Anomalies of the extratropical westerly jet in the North hemisphere and their impacts on East Asian summer monsoon climate anomalies. Chin. J. Geophys. 2004, 47, 11–18. (In Chinese) [Google Scholar]
- Hong, X.; Lu, R. The meridional displacement of the summer Asian jet, silk road pattern, and tropical SST anomalies. J. Clim. 2016, 29, 3753–3766. [Google Scholar] [CrossRef]
- Li, X.; Lu, R. Extratropical factors affecting the variability in summer precipitation over the Yangtze river basin, China. J. Clim. 2017, 30, 8357–8374. [Google Scholar] [CrossRef]
- Lin, L.; Hu, C.; Wang, B. Atlantic origin of the increasing Asian westerly jet interannual variability. Nat. Commun. 2024, 15, 2155. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Ding, Y. The variability of the Asian summer monsoon. J. Meteor. Soc. Jpn. Ser. II 2007, 85B, 21–54. [Google Scholar] [CrossRef]
- Molnar, P.; Boos, W.R.; Battisti, D.S. Orographic controls on climate and paleoclimate of Asia: The thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 2010, 38, 77–102. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Swenson, L.M.; Kong, W. Role of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitation. Geophys. Res. Lett. 2017, 44, 3788–3795. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Kong, W.; Wu, C.H. Origins of East Asian summer monsoon seasonality. J. Clim. 2020, 33, 7945–7965. [Google Scholar] [CrossRef]
- Kong, W.; Chiang, J.C.H. Interaction of the westerlies with the Tibetan Plateau in determining the Mei-yu termination. J. Clim. 2020, 33, 339–363. [Google Scholar] [CrossRef]
- Kong, W.; Chiang, J.C.H. Southward shift of westerlies intensifies the East Asian early summer rainband following El Niño. Geophys. Res. Lett. 2020, 47, e2020GL088631. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Wang, T. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeorol. 2007, 8, 770–789. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, G.; Dong, B.; Liang, X.; Duan, A.; Bao, Q.; Yu, J. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: Ι. Formation. Clim. Dyn. 2012, 39, 1169–1181. [Google Scholar] [CrossRef]
- Son, J.H.; Seo, K.H.; Wang, B. Dynamical control of the Tibetan Plateau on the East Asian summer monsoon. Geophys. Res. Lett. 2019, 46, 7672–7679. [Google Scholar] [CrossRef]
- Son, J.H.; Seo, K.H.; Wang, B. How does the Tibetan Plateau dynamically affect downstream monsoon precipitation? Geophys. Res. Lett. 2020, 47, e2020GL090543. [Google Scholar] [CrossRef]
- Son, J.H.; Kwon, J.I.; Heo, K.Y. Weak upstream westerly wind attracts western North Pacific typhoon tracks to west? Environ. Res. Lett. 2021, 16, 124041. [Google Scholar] [CrossRef]
- Son, J.H.; Seo, K.H. East Asian summer monsoon precipitation response to variations in upstream westerly wind? Clim. Dyn. 2022, 59, 77–84. [Google Scholar] [CrossRef]
- Sampe, T.; Xie, S.-P. Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Clim. 2010, 23, 113–134. [Google Scholar] [CrossRef]
- Chen, J.; Bordoni, S. Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Clim. 2014, 27, 3052–3072. [Google Scholar] [CrossRef]
- Hu, K.; Xie, S.-P.; Huang, G. Orographically anchored El Niño effect on summer rainfall in central China. J. Clim. 2017, 30, 10037–10045. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, H.; Zhao, S.; Zhang, J.; Lu, S. How East Asian westerly jet’s meridional position affects the summer rainfall in Yangtze-Huaihe river valley? Clim. Dyn. 2018, 51, 4109–4121. [Google Scholar] [CrossRef]
- Du, Y.; Li, T.; Xie, Z.; Zhu, Z. Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies. Clim. Dyn. 2016, 46, 2673–2688. [Google Scholar] [CrossRef]
- Hong, X.; Lu, R.; Li, S. Asymmetric relationship between the meridional displacement of the Asian westerly jet and the silk road pattern. Adv. Atmos. Sci. 2018, 35, 389–396. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Yang, S. Relationship between the Asian westerly jet stream and summer rainfall over central Asia and North China: Roles of the Indian monsoon and the South Asian high. J. Clim. 2017, 30, 537–552. [Google Scholar] [CrossRef]
- Chen, L.; Li, G.; Lu, B.; Li, Y.; Gao, C.; Long, S.-M.; Li, X.; Wang, Z. Two approaches of the spring North Atlantic sea surface temperature affecting the following July precipitation over central China: The tropical and extratropical pathways. J. Clim. 2022, 35, 2969–2986. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Kug, J.-S.; Park, J.-Y.; Jin, F.-F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci. 2013, 6, 112–116. [Google Scholar] [CrossRef]
- Hong, C.-C.; Chang, T.-C.; Hsu, H.-H. Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos. 2014, 119, 3715–3722. [Google Scholar] [CrossRef]
- Chang, T.-C.; Hsu, H.-H.; Hong, C.-C. Enhanced influences of tropical Atlantic SST on WNP-NIO atmosphere-ocean coupling since the early 1980s. J. Clim. 2016, 29, 6509–6525. [Google Scholar] [CrossRef]
- Li, X.; Xie, S.-P.; Gille, S.T.; Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Chang. 2016, 6, 275–279. [Google Scholar] [CrossRef]
- Li, W.; Ren, H.-C.; Zuo, J.; Ren, H.-L. Early summer southern China rainfall variability and its ocean drivers. Clim. Dyn. 2018, 50, 4691–4705. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.-Y.; Paek, H. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun. 2017, 8, 14887. [Google Scholar] [CrossRef]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.-S.; Yu, J.-Y.; Stuecker, M.F.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef]
- Zuo, J.; Li, W.; Sun, C.; Ren, H.-C. Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Clim. Dyn. 2019, 52, 2837–2853. [Google Scholar] [CrossRef]
- Vimont, D.J.; Battisti, D.S.; Hirst, A.C. Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett. 2001, 28, 3923–3926. [Google Scholar] [CrossRef]
- Wu, R.; Dai, P.; Chen, S. Persistence or transition of the North Atlantic Oscillation across boreal winter: Role of the North Atlantic air-sea coupling. J. Geophys. Res. Atmos. 2022, 127, e2022JD037270. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W. Strengthened connection between springtime North Atlantic Oscillation and North Atlantic tripole SST pattern since the late 1980s. J. Clim. 2020, 33, 2007–2022. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, D144407. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Hirahara, S.; Thépaut, J. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Gao, C.; Li, G.; Xu, B. Weakening influence of spring soil moisture over the Indo-China Peninsula on the following summer Mei-yu front and precipitation extremes over the Yangtze river basin. J. Clim. 2020, 33, 10055–10072. [Google Scholar] [CrossRef]
- Seager, R.; Harnik, N.; Kushnir, Y.; Robinson, W.; Miller, J. Mechanisms of hemispherically symmetric climate variability. J. Clim. 2003, 16, 2960–2978. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Trouet, V.; Babst, F.; Meko, M. Recent enhanced high-summer North Atlantic jet variability emerges from three-century context. Nat. Commun. 2018, 9, 180. [Google Scholar] [CrossRef] [PubMed]
- Screen, J.A.; Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Chang. 2014, 4, 704–709. [Google Scholar] [CrossRef]
- Scholten, R.C.; Coumou, D.; Luo, F.; Veraverbeke, S. Early snowmelt and polar jet dynamics co-influence recent extreme siberian fire seasons. Science 2022, 378, 1005–1009. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, B.; Li, J.; Jin, F.F. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res. Atmos. 2009, 114, D18120. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Jiang, Z.; He, J.; Zhu, X. Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian Summer monsoon and ENSO. Int. J. Climatol. 2012, 32, 794–800. [Google Scholar] [CrossRef]
- Zuo, J.; Li, W.; Sun, C.; Xu, L.; Ren, H.L. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci. 2013, 30, 1173–1186. [Google Scholar] [CrossRef]
- Yim, S.Y.; Wang, B.; Kwon, M.H. Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s. Clim. Dyn. 2014, 42, 1325–1333. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, G.; Duan, J. Changed Relationship between the Spring North Atlantic Tripole Sea Surface Temperature Anomalies and the Summer Meridional Shift of the Asian Westerly Jet. Atmosphere 2024, 15, 922. https://doi.org/10.3390/atmos15080922
Chen L, Li G, Duan J. Changed Relationship between the Spring North Atlantic Tripole Sea Surface Temperature Anomalies and the Summer Meridional Shift of the Asian Westerly Jet. Atmosphere. 2024; 15(8):922. https://doi.org/10.3390/atmos15080922
Chicago/Turabian StyleChen, Lin, Gen Li, and Jiaqi Duan. 2024. "Changed Relationship between the Spring North Atlantic Tripole Sea Surface Temperature Anomalies and the Summer Meridional Shift of the Asian Westerly Jet" Atmosphere 15, no. 8: 922. https://doi.org/10.3390/atmos15080922
APA StyleChen, L., Li, G., & Duan, J. (2024). Changed Relationship between the Spring North Atlantic Tripole Sea Surface Temperature Anomalies and the Summer Meridional Shift of the Asian Westerly Jet. Atmosphere, 15(8), 922. https://doi.org/10.3390/atmos15080922